Spacetime dynamics and integrable systems

M. Cárdenas ${ }^{1}$, F. Correa ${ }^{2}$, K. Lara ${ }^{1}$ and M. Pino, ${ }^{1}$
${ }^{1}$ Departamento de Física
Universidad de Santiago de Chile
${ }^{2}$ Instituto de Ciencias Físicas y Matemáticas
Universidad Austral de Chile

IMTP, Moscow, 9th Juny 2021. arXiv:2104.09676 [hep-th].

Table of Contents

Motivation

The AKNS system
$A d S_{3}$ general relativity

Conclusions

Motivation

The motivation are two fold:

Motivation

The motivation are two fold:

1. $A d S_{3}$ General relativity:

Motivation

The motivation are two fold:

1. $A d S_{3}$ General relativity:

- Trivial theory.

Motivation

The motivation are two fold:

1. $A d S_{3}$ General relativity:

- Trivial theory.
- The role of boundary conditions ${ }^{1}$.

[^0]
Motivation

The motivation are two fold:

1. $A d S_{3}$ General relativity:

- Trivial theory.
- The role of boundary conditions ${ }^{1}$.
- Black holes ${ }^{2}$.

[^1]
Motivation

The motivation are two fold:

1. $A d S_{3}$ General relativity:

- Trivial theory.
- The role of boundary conditions ${ }^{1}$.
- Black holes ${ }^{2}$.
- Soft hair ${ }^{3}$.

[^2]
Motivation

The motivation are two fold:

1. $A d S_{3}$ General relativity:

- Trivial theory.
- The role of boundary conditions ${ }^{1}$.
- Black holes ${ }^{2}$.
- Soft hair ${ }^{3}$.
- $\mathrm{KdV}^{4}, \mathrm{KdV} / \mathrm{MKdV}^{5}$, Boussinesq ${ }^{6}$.

[^3]
Motivation

2. Integrable systems.

Motivation

2. Integrable systems.

- Nonlinear differential equations.

Motivation

2. Integrable systems.

- Nonlinear differential equations.
- Integrable systems has a special property ${ }^{7}$: Involution of charges

$$
\left\{H_{n}, H_{m}\right\}=0 .
$$

Motivation

2. Integrable systems.

- Nonlinear differential equations.
- Integrable systems has a special property ${ }^{7}$: Involution of charges

$$
\left\{H_{n}, H_{m}\right\}=0 .
$$

- Solitons (kink ${ }^{8}$, breathers 9, e.g., Peregrine ${ }^{10}$, Akhmediev ${ }^{11}$; Peakons ${ }^{12}$.)

[^4]
Motivation

2. Integrable systems.

- Nonlinear differential equations.
- Integrable systems has a special property ${ }^{7}$: Involution of charges

$$
\left\{H_{n}, H_{m}\right\}=0 .
$$

- Solitons (kink ${ }^{8}$, breathers 9, e.g., Peregrine ${ }^{10}$, Akhmediev ${ }^{11}$; Peakons ${ }^{12}$.)
- There is an integrable system that encompasses well known equations, e.g., KdV, MKdV, NIS and sG equations, whose name is AKNS system ${ }^{13}$.

[^5]
Objectives

(a) General objective: Provide a gravitational framework to study the AKNS system.

Objectives

(a) General objective: Provide a gravitational framework to study the AKNS system.
(b) Particular objectives:

Objectives

(a) General objective: Provide a gravitational framework to study the AKNS system.
(b) Particular objectives:

- Study the integrability of the AKNS system.

Objectives

(a) General objective: Provide a gravitational framework to study the AKNS system.
(b) Particular objectives:

- Study the integrability of the AKNS system.
- In the context of $A d S_{3}$ general relativity, review the role of boundary conditions.

Objectives

(a) General objective: Provide a gravitational framework to study the AKNS system.
(b) Particular objectives:

- Study the integrability of the AKNS system.
- In the context of $A d S_{3}$ general relativity, review the role of boundary conditions.
- Impose boundary conditions to the gravitational field.

Objectives

(a) General objective: Provide a gravitational framework to study the AKNS system.
(b) Particular objectives:

- Study the integrability of the AKNS system.
- In the context of $A d S_{3}$ general relativity, review the role of boundary conditions.
- Impose boundary conditions to the gravitational field.
- Study the consistency of the boundary conditions.

Objectives

(a) General objective: Provide a gravitational framework to study the AKNS system.
(b) Particular objectives:

- Study the integrability of the AKNS system.
- In the context of $A d S_{3}$ general relativity, review the role of boundary conditions.
- Impose boundary conditions to the gravitational field.
- Study the consistency of the boundary conditions.
- Recover an associated metric from the boundary dynamics.

The AKNS system

The AKNS system

In their seminal article of 1973, Ablowitz, Kaup, Newell and Segur (AKNS) found a system of nonlinear partial differential equations

The AKNS system

In their seminal article of 1973, Ablowitz, Kaup, Newell and Segur (AKNS) found a system of nonlinear partial differential equations

$$
\begin{aligned}
\dot{r}+C^{\prime}-2 r A-2 \xi C & =0, \\
\dot{p}+B^{\prime}+2 p A+2 \xi B & =0, \\
A^{\prime}-p C+r B & =0,
\end{aligned}
$$

The AKNS system

In their seminal article of 1973, Ablowitz, Kaup, Newell and Segur (AKNS) found a system of nonlinear partial differential equations

$$
\begin{aligned}
\dot{r}+C^{\prime}-2 r A-2 \xi C & =0, \\
\dot{p}+B^{\prime}+2 p A+2 \xi B & =0, \\
A^{\prime}-p C+r B & =0,
\end{aligned}
$$

where $r=r(t, \phi)$ and $p=p(t, \phi)$ are dynamical fields

The AKNS system

In their seminal article of 1973, Ablowitz, Kaup, Newell and Segur (AKNS) found a system of nonlinear partial differential equations

$$
\begin{aligned}
\dot{r}+C^{\prime}-2 r A-2 \xi C & =0, \\
\dot{p}+B^{\prime}+2 p A+2 \xi B & =0, \\
A^{\prime}-p C+r B & =0,
\end{aligned}
$$

where $r=r(t, \phi)$ and $p=p(t, \phi)$ are dynamical fields, $A(t, \phi)$, $B(t, \phi)$ and $C(t, \phi)$ are functions that has to be specified

The AKNS system

In their seminal article of 1973, Ablowitz, Kaup, Newell and Segur (AKNS) found a system of nonlinear partial differential equations

$$
\begin{aligned}
\dot{r}+C^{\prime}-2 r A-2 \xi C & =0, \\
\dot{p}+B^{\prime}+2 p A+2 \xi B & =0, \\
A^{\prime}-p C+r B & =0,
\end{aligned}
$$

where $r=r(t, \phi)$ and $p=p(t, \phi)$ are dynamical fields, $A(t, \phi)$, $B(t, \phi)$ and $C(t, \phi)$ are functions that has to be specified and ξ is a constant.

The AKNS system

Following their work, assume a finite expansion for A, B and C in powers of ξ, namely

The AKNS system

Following their work, assume a finite expansion for A, B and C in powers of ξ, namely

$$
A=\sum_{n=0}^{N} A_{n} \xi^{N-n}, B=\sum_{n=0}^{N} B_{n} \xi^{N-n}, C=\sum_{n=0}^{N} C_{n} \xi^{N-n} .
$$

The AKNS system

Equating order by order in ξ, we obtain a set of equations from the coefficients associated to the n-th power of the spectral parameter

The AKNS system

Equating order by order in ξ, we obtain a set of equations from the coefficients associated to the n-th power of the spectral parameter: That is, a set of recurrence relations,

The AKNS system

Equating order by order in ξ, we obtain a set of equations from the coefficients associated to the n-th power of the spectral parameter: That is, a set of recurrence relations,

$$
\begin{aligned}
A_{n}^{\prime} & =p C_{n}-r B_{n}, \\
B_{n+1} & =-\frac{1}{2} B_{n}^{\prime}-p A_{n}, \\
C_{n+1} & =\frac{1}{2} C_{n}^{\prime}-r A_{n}, \\
B_{0} & =C_{0}=0,
\end{aligned}
$$

The AKNS system

Equating order by order in ξ, we obtain a set of equations from the coefficients associated to the n-th power of the spectral parameter: That is, a set of recurrence relations,

$$
\begin{aligned}
A_{n}^{\prime} & =p C_{n}-r B_{n}, \\
B_{n+1} & =-\frac{1}{2} B_{n}^{\prime}-p A_{n}, \\
C_{n+1} & =\frac{1}{2} C_{n}^{\prime}-r A_{n}, \\
B_{0} & =C_{0}=0,
\end{aligned}
$$

with dynamic equations

$$
\begin{gathered}
\dot{p}=-B_{N}^{\prime}-2 p A_{N}, \\
\dot{r}=-C_{N}^{\prime}+2 r A_{N} .
\end{gathered}
$$

The AKNS system

According to the obtained recurrence relations, it is possible to construct the first terms A_{n}, B_{n} and C_{n},

$$
\begin{aligned}
& A_{0}=1, \quad A_{1}=0, \quad A_{2}=-\frac{1}{2} p r, \quad A_{3}=\frac{1}{4}\left(p^{\prime} r-p r^{\prime}\right), \\
& B_{0}=0, \quad B_{1}=-p, \quad B_{2}=\frac{1}{2} p^{\prime}, \quad B_{3}=\frac{1}{2} p^{2} r-\frac{1}{4} p^{\prime \prime}, \\
& C_{0}=0, \quad C_{1}=-r, \quad C_{2}=-\frac{1}{2} r^{\prime}, \quad C_{3}=\frac{1}{2} p r^{2}-\frac{1}{4} r^{\prime \prime} .
\end{aligned}
$$

The AKNS system

Several well known integrable equations arise as particular cases of the above construction.

The AKNS system

Several well known integrable equations arise as particular cases of the above construction. For $N=1$ we obtain the chiral boson equation,

$$
\begin{aligned}
\dot{p} & =p^{\prime}, \\
\dot{r} & =r^{\prime} .
\end{aligned}
$$

The AKNS system

Several well known integrable equations arise as particular cases of the above construction. For $N=1$ we obtain the chiral boson equation,

$$
\begin{aligned}
\dot{p} & =p^{\prime}, \\
\dot{r} & =r^{\prime} .
\end{aligned}
$$

The AKNS system

Several well known integrable equations arise as particular cases of the above construction. For $N=1$ we obtain the chiral boson equation,

$$
\begin{aligned}
& \dot{p}=p^{\prime}, \\
& \dot{r}=r^{\prime} .
\end{aligned}
$$

For $N=3$,

$$
\dot{p}=-\frac{3}{2} p p^{\prime} r+\frac{1}{4} p^{\prime \prime \prime}, \quad \dot{r}=-\frac{3}{2} p r r^{\prime}+\frac{1}{4} r^{\prime \prime \prime},
$$

The AKNS system

Several well known integrable equations arise as particular cases of the above construction. For $N=1$ we obtain the chiral boson equation,

$$
\begin{aligned}
& \dot{p}=p^{\prime}, \\
& \dot{r}=r^{\prime} .
\end{aligned}
$$

For $N=3$,

$$
\dot{p}=-\frac{3}{2} p p^{\prime} r+\frac{1}{4} p^{\prime \prime \prime}, \quad \dot{r}=-\frac{3}{2} p r r^{\prime}+\frac{1}{4} r^{\prime \prime \prime},
$$

where, if $r=-1$, we obtain, in particular, the KdV equation,

$$
\dot{p}=\frac{3}{2} p p^{\prime}+\frac{1}{4} p^{\prime \prime \prime},
$$

The AKNS system

Several well known integrable equations arise as particular cases of the above construction. For $N=1$ we obtain the chiral boson equation,

$$
\begin{aligned}
& \dot{p}=p^{\prime}, \\
& \dot{r}=r^{\prime} .
\end{aligned}
$$

For $N=3$,

$$
\dot{p}=-\frac{3}{2} p p^{\prime} r+\frac{1}{4} p^{\prime \prime \prime}, \quad \dot{r}=-\frac{3}{2} p r r^{\prime}+\frac{1}{4} r^{\prime \prime \prime},
$$

where, if $r=-1$, we obtain, in particular, the KdV equation,

$$
\dot{p}=\frac{3}{2} p p^{\prime}+\frac{1}{4} p^{\prime \prime \prime},
$$

while, for $p=-r$, the MKdV equation

$$
\dot{p}=\frac{3}{2} p^{2} p^{\prime}+\frac{1}{4} p^{\prime \prime \prime} .
$$

The AKNS system

For $N=2$,

$$
\dot{p}=p^{2} r-\frac{1}{2} p^{\prime \prime}, \quad \dot{r}=-p r^{2}+\frac{1}{2} r^{\prime \prime}
$$

we get the (Wicked rotated) nonlinear Schrödinger equation

The AKNS system

For $N=2$,

$$
\dot{p}=p^{2} r-\frac{1}{2} p^{\prime \prime}, \quad \dot{r}=-p r^{2}+\frac{1}{2} r^{\prime \prime},
$$

we get the (Wicked rotated) nonlinear Schrödinger equation

- The Sine-Gordon equation is also included in this framework, however, negative powers of ξ must be included in the expansion in order to make it apparent.

The AKNS system

Following recursive methods, AKNS realized that the system has infinite conserved charges,

$$
H_{2}=-\int d \phi p r, \quad H_{3}=\frac{1}{4} \int d \phi\left(p^{\prime} r-p r^{\prime}\right), \quad \ldots
$$

The AKNS system

The AKNS system may be written as a bi-Hamiltonian system ${ }^{14}$

$$
\binom{\dot{r}}{\dot{p}}=\mathcal{D}_{1}\binom{\mathcal{R}_{N+1}}{\mathcal{P}_{N+1}}=\mathcal{D}_{2}\binom{\mathcal{R}_{N+2}}{\mathcal{P}_{N+2}},
$$

The AKNS system

The AKNS system may be written as a bi-Hamiltonian system ${ }^{14}$

$$
\binom{\dot{r}}{\dot{p}}=\mathcal{D}_{1}\binom{\mathcal{R}_{N+1}}{\mathcal{P}_{N+1}}=\mathcal{D}_{2}\binom{\mathcal{R}_{N+2}}{\mathcal{P}_{N+2}},
$$

where

$$
\mathcal{D}_{1}=\left(\begin{array}{cc}
-2 r \partial_{\phi}^{-1}(r \cdot) & -\partial_{\phi}+2 r \partial_{\phi}^{-1}(p \cdot) \\
-\partial_{\phi}+2 p \partial_{\phi}^{-1}(r \cdot) & -2 p \partial_{\phi}^{-1}(p \cdot)
\end{array}\right), \quad \mathcal{D}_{2}=\left(\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right),
$$

The AKNS system

The AKNS system may be written as a bi-Hamiltonian system ${ }^{14}$

$$
\binom{\dot{r}}{\dot{p}}=\mathcal{D}_{1}\binom{\mathcal{R}_{N+1}}{\mathcal{P}_{N+1}}=\mathcal{D}_{2}\binom{\mathcal{R}_{N+2}}{\mathcal{P}_{N+2}},
$$

where

$$
\mathcal{D}_{1}=\left(\begin{array}{cc}
-2 r \partial_{\phi}^{-1}(r \cdot) & -\partial_{\phi}+2 r \partial_{\phi}^{-1}(p \cdot) \\
-\partial_{\phi}+2 p \partial_{\phi}^{-1}(r \cdot) & -2 p \partial_{\phi}^{-1}(p \cdot)
\end{array}\right), \quad \mathcal{D}_{2}=\left(\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right),
$$

and

$$
\mathcal{R}_{n} \equiv \frac{\delta H_{n}}{\delta r}, \quad \mathcal{P}_{n} \equiv \frac{\delta H_{n}}{\delta p}
$$

The AKNS system

The AKNS system may be written as a bi-Hamiltonian system ${ }^{14}$

$$
\binom{\dot{r}}{\dot{p}}=\mathcal{D}_{1}\binom{\mathcal{R}_{N+1}}{\mathcal{P}_{N+1}}=\mathcal{D}_{2}\binom{\mathcal{R}_{N+2}}{\mathcal{P}_{N+2}},
$$

where

$$
\mathcal{D}_{1}=\left(\begin{array}{cc}
-2 r \partial_{\phi}^{-1}(r \cdot) & -\partial_{\phi}+2 r \partial_{\phi}^{-1}(p \cdot) \\
-\partial_{\phi}+2 p \partial_{\phi}^{-1}(r \cdot) & -2 p \partial_{\phi}^{-1}(p \cdot)
\end{array}\right), \quad \mathcal{D}_{2}=\left(\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right),
$$

and

$$
\mathcal{R}_{n} \equiv \frac{\delta H_{n}}{\delta r}, \quad \mathcal{P}_{n} \equiv \frac{\delta H_{n}}{\delta p}
$$

with

$$
A_{n}=\frac{n-1}{2} \mathcal{H}_{n}, \quad B_{n}=\mathcal{R}_{n+1}, \quad C_{n}=\mathcal{P}_{n+1},
$$

The AKNS system

Furthermore, the conserved charges are related by the following recursion formula

$$
\mathcal{D}_{2}\binom{\mathcal{R}_{n+1}}{\mathcal{P}_{n+1}}=\mathcal{D}_{1}\binom{\mathcal{R}_{n}}{\mathcal{P}_{n}}, \quad n=1,2,3, \ldots
$$

The AKNS system

Furthermore, the conserved charges are related by the following recursion formula

$$
\mathcal{D}_{2}\binom{\mathcal{R}_{n+1}}{\mathcal{P}_{n+1}}=\mathcal{D}_{1}\binom{\mathcal{R}_{n}}{\mathcal{P}_{n}}, \quad n=1,2,3, \ldots
$$

As a consequence of the former, the charges of the AKNS system are in involution, namely,

The AKNS system

Furthermore, the conserved charges are related by the following recursion formula

$$
\mathcal{D}_{2}\binom{\mathcal{R}_{n+1}}{\mathcal{P}_{n+1}}=\mathcal{D}_{1}\binom{\mathcal{R}_{n}}{\mathcal{P}_{n}}, \quad n=1,2,3, \ldots
$$

As a consequence of the former, the charges of the AKNS system are in involution, namely,

$$
\dot{H}_{n}=\left\{H_{n}, H_{m}\right\}=0, \quad n=1,2,3, \ldots
$$

$A d S_{3}$ general relativity

$A d S_{3}$ general relativity

In the vacuum and with negative cosmological constant, general relativity can be described in terms of two copies of the Chern-Simons action ${ }^{15}$

$$
I=I_{C S}\left[\mathcal{A}^{+}\right]-I_{C S}\left[\mathcal{A}^{-}\right]
$$

$A d S_{3}$ general relativity

In the vacuum and with negative cosmological constant, general relativity can be described in terms of two copies of the Chern-Simons action ${ }^{15}$

$$
I=I_{C S}\left[\mathcal{A}^{+}\right]-I_{C S}\left[\mathcal{A}^{-}\right]
$$

where the gauge field $\mathcal{A}^{ \pm}=\mathcal{A}_{t}^{ \pm} d t+\mathcal{A}_{\rho}^{ \pm} d \rho+\mathcal{A}_{\phi}^{ \pm} d \phi$ is spanned in the Lie algebra $\mathfrak{g}=\mathfrak{g}_{+}+\mathfrak{g}_{-}$, where $\mathfrak{g}_{ \pm}$denotes the two independent copies of $s l(2, \mathbb{R})$

$A d S_{3}$ general relativity

In the vacuum and with negative cosmological constant, general relativity can be described in terms of two copies of the Chern-Simons action ${ }^{15}$

$$
I=I_{C S}\left[\mathcal{A}^{+}\right]-I_{C S}\left[\mathcal{A}^{-}\right]
$$

where the gauge field $\mathcal{A}^{ \pm}=\mathcal{A}_{t}^{ \pm} d t+\mathcal{A}_{\rho}^{ \pm} d \rho+\mathcal{A}_{\phi}^{ \pm} d \phi$ is spanned in the Lie algebra $\mathfrak{g}=\mathfrak{g}_{+}+\mathfrak{g}_{-}$, where $\mathfrak{g}_{ \pm}$denotes the two independent copies of $s l(2, \mathbb{R})$ whose generators for the two copies are
${ }^{15}$ Achúcarro and Townsend, 1986; E. Witten, 1988.

$A d S_{3}$ general relativity

In the vacuum and with negative cosmological constant, general relativity can be described in terms of two copies of the Chern-Simons action ${ }^{15}$

$$
I=I_{C S}\left[\mathcal{A}^{+}\right]-I_{C S}\left[\mathcal{A}^{-}\right]
$$

where the gauge field $\mathcal{A}^{ \pm}=\mathcal{A}_{t}^{ \pm} d t+\mathcal{A}_{\rho}^{ \pm} d \rho+\mathcal{A}_{\phi}^{ \pm} d \phi$ is spanned in the Lie algebra $\mathfrak{g}=\mathfrak{g}_{+}+\mathfrak{g}_{-}$, where $\mathfrak{g}_{ \pm}$denotes the two independent copies of $\operatorname{sl}(2, \mathbb{R})$ whose generators for the two copies are

$$
L_{-1}^{ \pm}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), L_{0}^{ \pm}=\left(\begin{array}{cc}
-1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right), L_{1}^{ \pm}=\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)
$$

$A d S_{3}$ general relativity

In the vacuum and with negative cosmological constant, general relativity can be described in terms of two copies of the Chern-Simons action ${ }^{15}$

$$
I=I_{C S}\left[\mathcal{A}^{+}\right]-I_{C S}\left[\mathcal{A}^{-}\right]
$$

where the gauge field $\mathcal{A}^{ \pm}=\mathcal{A}_{t}^{ \pm} d t+\mathcal{A}_{\rho}^{ \pm} d \rho+\mathcal{A}_{\phi}^{ \pm} d \phi$ is spanned in the Lie algebra $\mathfrak{g}=\mathfrak{g}_{+}+\mathfrak{g}_{-}$, where $\mathfrak{g}_{ \pm}$denotes the two independent copies of $\operatorname{sl}(2, \mathbb{R})$ whose generators for the two copies are

$$
L_{-1}^{ \pm}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), L_{0}^{ \pm}=\left(\begin{array}{cc}
-1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right), L_{1}^{ \pm}=\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)
$$

where the $\operatorname{sl}(2, \mathbb{R})$ algebra is

$$
\left[L_{n}^{ \pm}, L_{m}^{ \pm}\right]=(n-m) L_{n+m}
$$

${ }^{15}$ Achúcarro and Townsend, 1986; E. Witten, 1988.

$A d S_{3}$ general relativity

The connection splits as $\mathcal{A}=\mathcal{A}^{+}+\mathcal{A}^{-}$, where

$$
\mathcal{A}^{ \pm}=\omega \pm \frac{e}{l}
$$

with $e^{a}=e_{\mu}^{a} d x^{\mu}$ the vielbein and $\omega_{\mu}^{a} d x^{\mu}$ the spin connection.

$A d S_{3}$ general relativity

The connection splits as $\mathcal{A}=\mathcal{A}^{+}+\mathcal{A}^{-}$, where

$$
\mathcal{A}^{ \pm}=\omega \pm \frac{e}{l}
$$

with $e^{a}=e_{\mu}^{a} d x^{\mu}$ the vielbein and $\omega_{\mu}^{a} d x^{\mu}$ the spin connection. The action is

$$
I_{C S}\left[\mathcal{A}^{ \pm}\right]=\frac{k}{4 \pi} \int\left\langle\mathcal{A}^{ \pm} d \mathcal{A}^{ \pm}+\frac{2}{3} \mathcal{A}^{ \pm 3}\right\rangle
$$

and $F^{ \pm}=d \mathcal{A}^{ \pm}+\mathcal{A}^{ \pm 2}=0$.

Hamiltonian formalism

Consider the $2+1$ splitting $\mathcal{A}_{\mu}^{ \pm}=\left(\mathcal{A}_{t}^{ \pm}, \mathcal{A}_{i}^{ \pm}\right)$.

Hamiltonian formalism

Consider the $2+1$ splitting $\mathcal{A}_{\mu}^{ \pm}=\left(\mathcal{A}_{t}^{ \pm}, \mathcal{A}_{i}^{ \pm}\right)$. In components, the action reads

$$
I_{H}=-\frac{k}{4 \pi} \int d t d^{2} x \epsilon^{i j}\left\langle A_{i}^{ \pm} \dot{A}_{j}^{ \pm}-A_{t}^{ \pm} F_{i j}^{ \pm}\right\rangle,
$$

Hamiltonian formalism

Consider the $2+1$ splitting $\mathcal{A}_{\mu}^{ \pm}=\left(\mathcal{A}_{t}^{ \pm}, \mathcal{A}_{i}^{ \pm}\right)$. In components, the action reads

$$
I_{H}=-\frac{k}{4 \pi} \int d t d^{2} x \epsilon^{i j}\left\langle A_{i}^{ \pm} \dot{A}_{j}^{ \pm}-A_{t}^{ \pm} F_{i j}^{ \pm}\right\rangle,
$$

where $F_{i j}^{ \pm}=\partial_{i} \mathcal{A}_{j}^{ \pm}-\partial_{j} \mathcal{A}_{i}^{ \pm}+\left[\mathcal{A}_{i}^{ \pm}, \mathcal{A}_{j}^{ \pm}\right]$.

Hamiltonian formalism

Consider the $2+1$ splitting $\mathcal{A}_{\mu}^{ \pm}=\left(\mathcal{A}_{t}^{ \pm}, \mathcal{A}_{i}^{ \pm}\right)$. In components, the action reads

$$
I_{H}=-\frac{k}{4 \pi} \int d t d^{2} x \epsilon^{i j}\left\langle A_{i}^{ \pm} \dot{A}_{j}^{ \pm}-A_{t}^{ \pm} F_{i j}^{ \pm}\right\rangle
$$

where $F_{i j}^{ \pm}=\partial_{i} \mathcal{A}_{j}^{ \pm}-\partial_{j} \mathcal{A}_{i}^{ \pm}+\left[\mathcal{A}_{i}^{ \pm}, \mathcal{A}_{j}^{ \pm}\right]$. We can see that $\mathcal{A}_{t}^{ \pm}$is a Lagrange multiplier and $F_{i j}^{ \pm}$a constraint of the theory.

Boundary term

If we want a bonna fide action principle, we must suplement the action with a surface integral, which is

$$
\delta \mathcal{B}^{ \pm}=-\frac{k}{2 \pi} \oint_{\rho \rightarrow \infty} d t d \phi\left\langle A_{t}^{ \pm} \delta A_{\phi}^{ \pm}\right\rangle .
$$

Boundary term

If we want a bonna fide action principle, we must suplement the action with a surface integral, which is

$$
\delta \mathcal{B}^{ \pm}=-\frac{k}{2 \pi} \oint_{\rho \rightarrow \infty} d t d \phi\left\langle A_{t}^{ \pm} \delta A_{\phi}^{ \pm}\right\rangle .
$$

Hence, we must specify $A_{t}^{ \pm}(t, \rho \rightarrow \infty, \phi)$ and $A_{\phi}^{ \pm}(t, \rho \rightarrow \infty, \phi)$, in order to integrate the surface term.

Boundary term

Before proceeding, it is convenient to gauge-away the radial dependence.

Boundary term

Before proceeding, it is convenient to gauge-away the radial dependence. When $\mathcal{A}^{ \pm}$transforms as,

$$
a^{ \pm}=b_{ \pm}^{-1}\left(d+\mathcal{A}^{ \pm}\right) b_{ \pm}
$$

Boundary term

Before proceeding, it is convenient to gauge-away the radial dependence. When $\mathcal{A}^{ \pm}$transforms as,

$$
a^{ \pm}=b_{ \pm}^{-1}\left(d+\mathcal{A}^{ \pm}\right) b_{ \pm}
$$

the choice $b_{ \pm}(\rho)=e^{ \pm \rho L_{0}^{ \pm}}$captures completely the radial dependence, yielding

$$
a_{\rho}^{ \pm}=0, \quad a_{t}^{ \pm}=a_{t}^{ \pm}(t, \phi), \quad a_{\phi}^{ \pm}=a_{\phi}^{ \pm}(t, \phi)
$$

Boundary conditions

The boundary conditions are

$$
\begin{aligned}
& a_{\phi}^{ \pm}=\mp 2 \xi^{ \pm} L_{0}-p^{ \pm} L_{ \pm 1}+r^{ \pm} L_{\mp 1}, \\
& a_{t}^{ \pm}=\frac{1}{\ell}\left(-2 A^{ \pm} L_{0} \pm B^{ \pm} L_{ \pm 1} \mp C^{ \pm} L_{\mp 1}\right),
\end{aligned}
$$

Boundary conditions

The boundary conditions are

$$
\begin{aligned}
& a_{\phi}^{ \pm}=\mp 2 \xi^{ \pm} L_{0}-p^{ \pm} L_{ \pm 1}+r^{ \pm} L_{\mp 1} \\
& a_{t}^{ \pm}=\frac{1}{\ell}\left(-2 A^{ \pm} L_{0} \pm B^{ \pm} L_{ \pm 1} \mp C^{ \pm} L_{\mp 1}\right),
\end{aligned}
$$

where $p^{ \pm}=p^{ \pm}(t, \phi)$ and $r^{ \pm}=r^{ \pm}(t, \phi)$ are the fields carrying the boundary dynamics of the theory, $A^{ \pm}=A^{ \pm}(t, \phi), B^{ \pm}=B^{ \pm}(t, \phi)$ and $C^{ \pm}=C^{ \pm}(t, \phi)$ are polynomials functions on $\xi^{ \pm}$that has to be specified.

Boundary conditions

Thus, the zero-curvature equation of motion

$$
f_{t \phi}^{ \pm}=\partial_{t} a_{\phi}^{ \pm}-\partial_{\phi} a_{t}^{ \pm}+\left[a_{t}^{ \pm}, a_{\phi}^{ \pm}\right]=0
$$

Boundary conditions

Thus, the zero-curvature equation of motion

$$
f_{t \phi}^{ \pm}=\partial_{t} a_{\phi}^{ \pm}-\partial_{\phi} a_{t}^{ \pm}+\left[a_{t}^{ \pm}, a_{\phi}^{ \pm}\right]=0
$$

yields the AKNS system (but in the Chern-Simons formulation)

$$
\begin{aligned}
\pm \dot{r}^{ \pm}+\frac{1}{\ell}\left(C^{ \pm}-2 r^{ \pm} A^{ \pm}-2 \xi^{ \pm} C^{ \pm}\right) & =0 \\
\pm \dot{p}^{ \pm}+\frac{1}{\ell}\left(B^{\prime \pm}+2 p^{ \pm} A^{ \pm}+2 \xi^{ \pm} B^{ \pm}\right) & =0 \\
A^{\prime \pm}-p^{ \pm} C^{ \pm}+r^{ \pm} B^{ \pm} & =0
\end{aligned}
$$

Boundary conditions

We may consider the same analysis as before, in order to obtain

Boundary conditions

We may consider the same analysis as before, in order to obtain

$$
\begin{aligned}
\dot{p} & =-B_{N}^{\prime}-2 p A_{N}, \\
\dot{r} & =-C_{N}^{\prime}+2 r A_{N},
\end{aligned}
$$

Boundary conditions

We may consider the same analysis as before, in order to obtain

$$
\begin{aligned}
& \dot{p}=-B_{N}^{\prime}-2 p A_{N}, \\
& \dot{r}=-C_{N}^{\prime}+2 r A_{N},
\end{aligned}
$$

A remark.

Consistency of boundary conditions

The above construction provides a complete framework to address the question whether the boundary conditions are suitable ${ }^{16}$
${ }^{16}$ Regge and Teitelboim, 1974.

Consistency of boundary conditions

The above construction provides a complete framework to address the question whether the boundary conditions are suitable ${ }^{16}$

1. Boundary term

Consistency of boundary conditions

The above construction provides a complete framework to address the question whether the boundary conditions are suitable ${ }^{16}$

1. Boundary term

$$
\delta \mathcal{B}=-\frac{k}{2 \pi} \int d t d \phi\left\langle a_{t} \delta a_{\phi}\right\rangle
$$

Consistency of boundary conditions

The above construction provides a complete framework to address the question whether the boundary conditions are suitable ${ }^{16}$

1. Boundary term

$$
\begin{aligned}
\delta \mathcal{B} & =-\frac{k}{2 \pi} \int d t d \phi\left\langle a_{t} \delta a_{\phi}\right\rangle \\
\Rightarrow \mathcal{B} & =\frac{k}{2 \pi} \int \frac{d t}{\ell} \sum_{n=0}^{N} \xi^{N-n} H_{n+1}
\end{aligned}
$$

Consistency of boundary conditions

The above construction provides a complete framework to address the question whether the boundary conditions are suitable ${ }^{16}$

1. Boundary term

$$
\begin{aligned}
\delta \mathcal{B} & =-\frac{k}{2 \pi} \int d t d \phi\left\langle a_{t} \delta a_{\phi}\right\rangle \\
\Rightarrow \mathcal{B} & =\frac{k}{2 \pi} \int \frac{d t}{\ell} \sum_{n=0}^{N} \xi^{N-n} H_{n+1}
\end{aligned}
$$

which integrates the surface integral in the action, yielding a well-defined principle.

Consistency of boundary conditions

2. Asymptotic symmetries. They correspond to the family of infinitesimal gauge transformations,

Consistency of boundary conditions

2. Asymptotic symmetries. They correspond to the family of infinitesimal gauge transformations,

$$
\delta a=d \Lambda+[a, \Lambda] .
$$

Consistency of boundary conditions

2. Asymptotic symmetries. They correspond to the family of infinitesimal gauge transformations,

$$
\delta a=d \Lambda+[a, \Lambda] .
$$

In order to find them, consider a general gauge parameter

$$
\Lambda=-2 \alpha L_{0}+\beta L_{1}-\gamma L_{-1}
$$

Consistency of boundary conditions

2. Asymptotic symmetries. They correspond to the family of infinitesimal gauge transformations,

$$
\delta a=d \Lambda+[a, \Lambda] .
$$

In order to find them, consider a general gauge parameter

$$
\Lambda=-2 \alpha L_{0}+\beta L_{1}-\gamma L_{-1}
$$

The angular component of the transformation

Consistency of boundary conditions

2. Asymptotic symmetries. They correspond to the family of infinitesimal gauge transformations,

$$
\delta a=d \Lambda+[a, \Lambda] .
$$

In order to find them, consider a general gauge parameter

$$
\Lambda=-2 \alpha L_{0}+\beta L_{1}-\gamma L_{-1}
$$

The angular component of the transformation

$$
\delta a_{\phi}=\partial_{\phi} \Lambda+\left[a_{\phi}, \Lambda\right],
$$

Consistency of boundary conditions

2. Asymptotic symmetries. They correspond to the family of infinitesimal gauge transformations,

$$
\delta a=d \Lambda+[a, \Lambda] .
$$

In order to find them, consider a general gauge parameter

$$
\Lambda=-2 \alpha L_{0}+\beta L_{1}-\gamma L_{-1}
$$

The angular component of the transformation

$$
\delta a_{\phi}=\partial_{\phi} \Lambda+\left[a_{\phi}, \Lambda\right],
$$

yields equations analogous to the AKNS system.

Consistency of boundary conditions

2. Asymptotic symmetries. They correspond to the family of infinitesimal gauge transformations,

$$
\delta a=d \Lambda+[a, \Lambda] .
$$

In order to find them, consider a general gauge parameter

$$
\Lambda=-2 \alpha L_{0}+\beta L_{1}-\gamma L_{-1}
$$

The angular component of the transformation

$$
\delta a_{\phi}=\partial_{\phi} \Lambda+\left[a_{\phi}, \Lambda\right], \quad \Rightarrow \partial_{t} a_{\phi}=\partial_{\phi} a_{t}+\left[a_{\phi}, a_{t}\right]
$$

yields equations analogous to the AKNS system.

Consistency of boundary conditions

As a result, the functions α, β and γ are

$$
\alpha=\sum_{m=0}^{M} \frac{(m-1)}{2} \mathcal{H}_{m} \xi^{M-m}, \quad \beta=\sum_{m=0}^{M} \mathcal{R}_{m+1} \xi^{M-m}, \quad \gamma=\sum_{m=0}^{M} \mathcal{P}_{m+1} \xi^{M-m},
$$

Consistency of boundary conditions

As a result, the functions α, β and γ are
$\alpha=\sum_{m=0}^{M} \frac{(m-1)}{2} \mathcal{H}_{m} \xi^{M-m}, \quad \beta=\sum_{m=0}^{M} \mathcal{R}_{m+1} \xi^{M-m}, \quad \gamma=\sum_{m=0}^{M} \mathcal{P}_{m+1} \xi^{M-m}$,
where M is a positive integer and labels an infinite family of permissible gauge transformations.

Consistency of boundary conditions

As a result, the functions α, β and γ are
$\alpha=\sum_{m=0}^{M} \frac{(m-1)}{2} \mathcal{H}_{m} \xi^{M-m}, \quad \beta=\sum_{m=0}^{M} \mathcal{R}_{m+1} \xi^{M-m}, \quad \gamma=\sum_{m=0}^{M} \mathcal{P}_{m+1} \xi^{M-m}$,
where M is a positive integer and labels an infinite family of permissible gauge transformations. Hence, the infinitesimal transformation of the fields r and p are

$$
\delta r=-\gamma_{M}^{\prime}+2 r \alpha_{M}, \quad \delta p=-\beta_{M}^{\prime}-2 p \alpha_{M} .
$$

Consistency of boundary conditions

3. Algebra of charges:

Consistency of boundary conditions

3. Algebra of charges: The first class constraint must be suplemented by a boundary term in order to make it differentiable ${ }^{17}$

Consistency of boundary conditions

3. Algebra of charges: The first class constraint must be suplemented by a boundary term in order to make it differentiable ${ }^{17}$

$$
\delta Q[\Lambda]=\frac{k}{2 \pi} \oint_{\rho \rightarrow \infty} d \phi\left\langle\Lambda \delta a_{\phi}\right\rangle
$$

${ }^{17}$ Regge, Teitelboim, 1973; Bañados, 1996.

Consistency of boundary conditions

3. Algebra of charges: The first class constraint must be suplemented by a boundary term in order to make it differentiable ${ }^{17}$

$$
\begin{aligned}
\delta Q[\Lambda] & =\frac{k}{2 \pi} \oint_{\rho \rightarrow \infty} d \phi\left\langle\Lambda \delta a_{\phi}\right\rangle \\
\Rightarrow Q[\Lambda] & =\frac{k}{2 \pi} \sum_{m=0}^{M} \xi^{M-m} H_{m+1}
\end{aligned}
$$

${ }^{17}$ Regge, Teitelboim, 1973; Bañados, 1996.

Consistency of boundary conditions

3. Algebra of charges: The first class constraint must be suplemented by a boundary term in order to make it differentiable ${ }^{17}$

$$
\begin{aligned}
\delta Q[\Lambda] & =\frac{k}{2 \pi} \oint_{\rho \rightarrow \infty} d \phi\left\langle\Lambda \delta a_{\phi}\right\rangle \\
\Rightarrow Q[\Lambda] & =\frac{k}{2 \pi} \sum_{m=0}^{M} \xi^{M-m} H_{m+1}
\end{aligned}
$$

It is possible to prove that the algebra of charges is

$$
\{Q[\Lambda], Q[\bar{\Lambda}]\}=0
$$

${ }^{17}$ Regge, Teitelboim, 1973; Bañados, 1996.

Consistency of boundary conditions

$A d S_{3}$ general relativity is trivial from the bulk perspective. Thus, the dynamical content will be captured by boundary conditions and holonomies.

Consistency of boundary conditions

$A d S_{3}$ general relativity is trivial from the bulk perspective. Thus, the dynamical content will be captured by boundary conditions and holonomies.

The holonomy in the angular coordinate is

Consistency of boundary conditions

$A d S_{3}$ general relativity is trivial from the bulk perspective. Thus, the dynamical content will be captured by boundary conditions and holonomies.

The holonomy in the angular coordinate is

$$
M^{ \pm}=\operatorname{Tr}\left(\mathcal{P} \exp \oint d \phi a_{\phi}^{ \pm}\right)
$$

Consistency of boundary conditions

$A d S_{3}$ general relativity is trivial from the bulk perspective. Thus, the dynamical content will be captured by boundary conditions and holonomies.

The holonomy in the angular coordinate is

$$
\begin{aligned}
M^{ \pm} & =\operatorname{Tr}\left(\mathcal{P} \exp \oint d \phi a_{\phi}^{ \pm}\right) \\
& =2 \cosh \left(2 \pi \sqrt{\left(\xi^{ \pm}\right)^{2}+p_{0}^{ \pm} r_{0}^{ \pm}}\right)
\end{aligned}
$$

Consistency of boundary conditions

$A d S_{3}$ general relativity is trivial from the bulk perspective. Thus, the dynamical content will be captured by boundary conditions and holonomies.

The holonomy in the angular coordinate is

$$
\begin{aligned}
M^{ \pm} & =\operatorname{Tr}\left(\mathcal{P} \exp \oint d \phi a_{\phi}^{ \pm}\right) \\
& =2 \cosh \left(2 \pi \sqrt{\left(\xi^{ \pm}\right)^{2}+p_{0}^{ \pm} r_{0}^{ \pm}}\right)
\end{aligned}
$$

where $p^{ \pm}=\sum_{n} p_{n}^{ \pm} e^{i n \phi}$ and $r^{ \pm}=\sum_{n} r_{n}^{ \pm} e^{i n \phi}$.

Consistency of boundary conditions

$$
M^{ \pm}=2 \cosh \left(2 \pi \sqrt{\left(\xi^{ \pm}\right)^{2}+p_{0}^{ \pm} r_{0}^{ \pm}}\right)
$$

Consistency of boundary conditions

$$
M^{ \pm}=2 \cosh \left(2 \pi \sqrt{\left(\xi^{ \pm}\right)^{2}+p_{0}^{ \pm} r_{0}^{ \pm}}\right),
$$

What does represent the previous result, physically? According to [Martinec, 1998],

Consistency of boundary conditions

$$
M^{ \pm}=2 \cosh \left(2 \pi \sqrt{\left(\xi^{ \pm}\right)^{2}+p_{0}^{ \pm} r_{0}^{ \pm}}\right),
$$

What does represent the previous result, physically? According to [Martinec, 1998],

- If $M^{ \pm}<2$, the configuration represent classical particle sources, inducing conical singularities.

Consistency of boundary conditions

$$
M^{ \pm}=2 \cosh \left(2 \pi \sqrt{\left(\xi^{ \pm}\right)^{2}+p_{0}^{ \pm} r_{0}^{ \pm}}\right),
$$

What does represent the previous result, physically? According to [Martinec, 1998],

- If $M^{ \pm}<2$, the configuration represent classical particle sources, inducing conical singularities.
- $M^{ \pm}>2$ typifies black hole solutions.

Consistency of boundary conditions

$$
M^{ \pm}=2 \cosh \left(2 \pi \sqrt{\left(\xi^{ \pm}\right)^{2}+p_{0}^{ \pm} r_{0}^{ \pm}}\right),
$$

What does represent the previous result, physically? According to [Martinec, 1998],

- If $M^{ \pm}<2$, the configuration represent classical particle sources, inducing conical singularities.
- $M^{ \pm}>2$ typifies black hole solutions.
- $M^{ \pm}=2$, leads to extremal black holes configurations.

Consistency of boundary conditions

$$
M^{ \pm}=2 \cosh \left(2 \pi \sqrt{\left(\xi^{ \pm}\right)^{2}+p_{0}^{ \pm} r_{0}^{ \pm}}\right),
$$

What does represent the previous result, physically? According to [Martinec, 1998],

- If $M^{ \pm}<2$, the configuration represent classical particle sources, inducing conical singularities.
- $M^{ \pm}>2$ typifies black hole solutions.
- $M^{ \pm}=2$, leads to extremal black holes configurations.

Remarkably, the three above configurations are attainable.

Consistency of boundary conditions

It is important to say that any solution of Einstein's equations in three dimensions with a negative cosmological constant corresponds to a spacetime of constant negative curvature.

Consistency of boundary conditions

It is important to say that any solution of Einstein's equations in three dimensions with a negative cosmological constant corresponds to a spacetime of constant negative curvature.

Thus, its geometry coincides locally $A d S_{3}$. The only difference resides in its global properties ${ }^{18}$.
${ }^{18}$ Bañados, Henneaux, Teitelboim and Zanelli, 1993.

Construction of the metric

We can recover the metric,

$$
g_{\mu \nu}=\frac{\ell^{2}}{2}\left\langle\left(A_{\mu}^{+}-A_{\mu}^{-}\right)\left(A_{\nu}^{+}-A_{\nu}^{-}\right)\right\rangle .
$$

In ADM coordinates

$$
d s^{2}=-N^{2} d t^{2}+\gamma_{i j}\left(N^{i} d t+d x^{i}\right)\left(N^{j} d t+d x^{j}\right)
$$

with $i=\rho, \phi$, we obtain

Construction of the metric

the lapse function

$$
N^{2}=\frac{\rho^{2}}{4 \ell^{2}} \frac{\left(\Omega^{+} \omega^{-}+\Omega^{-} \omega^{+}\right)^{2}}{\omega^{-} \omega^{+}}
$$

Construction of the metric

the lapse function

$$
N^{2}=\frac{\rho^{2}}{4 \ell^{2}} \frac{\left(\Omega^{+} \omega^{-}+\Omega^{-} \omega^{+}\right)^{2}}{\omega^{-} \omega^{+}}
$$

the shift vectors

$$
\begin{aligned}
& N^{\rho}=\frac{\rho}{\ell}\left(A^{-}-A^{+}+\frac{1}{2}\left(\xi^{+}+\xi^{-}\right)\left(\frac{\Omega^{-}}{\omega^{-}}-\frac{\Omega^{+}}{\omega^{+}}\right)\right), \\
& N^{\phi}=\frac{1}{2 \ell}\left(\frac{\Omega^{-}}{\omega^{-}}-\frac{\Omega^{+}}{\omega^{+}}\right)
\end{aligned}
$$

Construction of the metric

the lapse function

$$
N^{2}=\frac{\rho^{2}}{4 \ell^{2}} \frac{\left(\Omega^{+} \omega^{-}+\Omega^{-} \omega^{+}\right)^{2}}{\omega^{-} \omega^{+}}
$$

the shift vectors

$$
\begin{aligned}
& N^{\rho}=\frac{\rho}{\ell}\left(A^{-}-A^{+}+\frac{1}{2}\left(\xi^{+}+\xi^{-}\right)\left(\frac{\Omega^{-}}{\omega^{-}}-\frac{\Omega^{+}}{\omega^{+}}\right)\right), \\
& N^{\phi}=\frac{1}{2 \ell}\left(\frac{\Omega^{-}}{\omega^{-}}-\frac{\Omega^{+}}{\omega^{+}}\right)
\end{aligned}
$$

the spatial metric

$$
\gamma_{i j}=\left(\begin{array}{cc}
\frac{\ell^{2}}{\rho^{2}} & -\frac{\ell^{2}}{\rho}\left(\xi^{+}+\xi^{-}\right) \\
-\frac{\ell^{2}}{\rho}\left(\xi^{+}+\xi^{-}\right) & \ell^{2}\left(\xi^{+}+\xi^{-}\right)^{2}+\rho^{2} \omega^{-} \omega^{+}
\end{array}\right)
$$

Construction of the metric

where the auxiliary functions $\Omega^{ \pm}$and $\omega^{ \pm}$are defined as

$$
\Omega^{ \pm} \equiv B^{ \pm}-\frac{\ell^{2}}{\rho^{2}} C^{\mp}, \quad \omega^{ \pm} \equiv p^{ \pm}+\frac{\ell^{2}}{\rho^{2}} r^{\mp}
$$

with ℓ the $A d S_{3}$ radius.

Construction of the metric

where the auxiliary functions $\Omega^{ \pm}$and $\omega^{ \pm}$are defined as

$$
\Omega^{ \pm} \equiv B^{ \pm}-\frac{\ell^{2}}{\rho^{2}} C^{\mp}, \quad \omega^{ \pm} \equiv p^{ \pm}+\frac{\ell^{2}}{\rho^{2}} r^{\mp}
$$

with ℓ the $A d S_{3}$ radius. The Einstein equations

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R-\frac{1}{\ell^{2}} g_{\mu \nu}=0
$$

Construction of the metric

where the auxiliary functions $\Omega^{ \pm}$and $\omega^{ \pm}$are defined as

$$
\Omega^{ \pm} \equiv B^{ \pm}-\frac{\ell^{2}}{\rho^{2}} C^{\mp}, \quad \omega^{ \pm} \equiv p^{ \pm}+\frac{\ell^{2}}{\rho^{2}} r^{\mp}
$$

with ℓ the $A d S_{3}$ radius. The Einstein equations

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R-\frac{1}{\ell^{2}} g_{\mu \nu}=0
$$

reduces to the AKNS system ${ }^{19}$.

Final remarks

The familiy of boundary conditions constructed here encompasses some examples found in the literature.

- The Brown-Henneaux boundary conditions ${ }^{20}$ may be recovered when $N^{ \pm}=1, r^{ \pm}=1$ and then setting $\xi^{ \pm}=0$.
${ }^{20}$ Brown and Henneaux, 1986.
${ }^{21}$ Compere, Song and Strominger, 2013; Troessaert, 2013; Grumiller and Riegler, 2016; Ojeda and Pérez, 2019.

Final remarks

The familiy of boundary conditions constructed here encompasses some examples found in the literature.

- The Brown-Henneaux boundary conditions ${ }^{20}$ may be recovered when $N^{ \pm}=1, r^{ \pm}=1$ and then setting $\xi^{ \pm}=0$.
- Additionally, the family of KdV boundary conditions found in [Pérez, Tempo and Troncoso (2016)] is recovered for $r^{ \pm}=1$, odd values of $N^{ \pm}$and vanishing $\xi^{ \pm}$.

[^6] de Chile Riegler, 2016; Ojeda and Pérez, 2019.

Final remarks

The familiy of boundary conditions constructed here encompasses some examples found in the literature.

- The Brown-Henneaux boundary conditions ${ }^{20}$ may be recovered when $N^{ \pm}=1, r^{ \pm}=1$ and then setting $\xi^{ \pm}=0$.
- Additionally, the family of KdV boundary conditions found in [Pérez, Tempo and Troncoso (2016)] is recovered for $r^{ \pm}=1$, odd values of $N^{ \pm}$and vanishing $\xi^{ \pm}$. A detailed discussion of how this work relates to several other boundary conditions for AdS_{3} gravity ${ }^{21}$, will be given in future works.

[^7] Riegler, 2016; Ojeda and Pérez, 2019.

Final remarks

The familiy of boundary conditions constructed here encompasses some examples found in the literature.

- The Brown-Henneaux boundary conditions ${ }^{20}$ may be recovered when $N^{ \pm}=1, r^{ \pm}=1$ and then setting $\xi^{ \pm}=0$.
- Additionally, the family of KdV boundary conditions found in [Pérez, Tempo and Troncoso (2016)] is recovered for $r^{ \pm}=1$, odd values of $N^{ \pm}$and vanishing $\xi^{ \pm}$. A detailed discussion of how this work relates to several other boundary conditions for AdS_{3} gravity ${ }^{21}$, will be given in future works.

[^8] Riegler, 2016; Ojeda and Pérez, 2019.

Conclusions

Conclusions

1. We studied the integrable system known as AKNS system.

Conclusions

1. We studied the integrable system known as AKNS system.
2. We studied its spacetime geometrization in $2+1$ dimensions, i.e., we constructed a bonna fide action principle, we found its asymptotic symmetries, we computed the algebra of charges and we proved that gravitational configurations, such as black holes, are attainable.

Conclusions

1. We studied the integrable system known as AKNS system.
2. We studied its spacetime geometrization in $2+1$ dimensions, i.e., we constructed a bonna fide action principle, we found its asymptotic symmetries, we computed the algebra of charges and we proved that gravitational configurations, such as black holes, are attainable.
3. Further work must be done, such as thermodynamics, higher spins extensions, Hamiltonian reduction, etc.

Thank you for your attention!

[^0]: ${ }^{1}$ Brown, Henneaux, 1986; Coussaert, Henneaux and Van Driel, 1995.

[^1]: ${ }^{1}$ Brown, Henneaux, 1986; Coussaert, Henneaux and Van Driel, 1995.
 ${ }^{2}$ Bañados, Teitelboim, Zanelli, 1992; Bañados, Henneaux, Teitelboim, Zanelif, 1993.

[^2]: ${ }^{1}$ Brown, Henneaux, 1986; Coussaert, Henneaux and Van Driel, 1995.
 ${ }^{2}$ Bañados, Teitelboim, Zanelli, 1992; Bañados, Henneaux, Teitelboim, Zanelli, 1993.
 ${ }^{3}$ Hawking, Perry and Strominger, 2016.

[^3]: ${ }^{1}$ Brown, Henneaux, 1986; Coussaert, Henneaux and Van Driel, 1995.
 ${ }^{2}$ Bañados, Teitelboim, Zanelli, 1992; Bañados, Henneaux, Teitelboim, Zanelli, 1993.
 ${ }^{3}$ Hawking, Perry and Strominger, 2016.
 ${ }^{4}$ Pérez, Tempo and Troncoso, 2016.
 ${ }^{5}$ Ojeda, Pérez, 2019.

[^4]: ${ }^{7}$ Dunajski, 2009.
 ${ }^{8}$ Drazin and Johnson, 1989.
 ${ }^{9}$ Ablowitz, Kaup, Newell, Segur, 1973.
 ${ }^{10}$ Peregrine, 1983.
 ${ }^{11}$ Akhmediev, Ankiewivz, Taki, 2009.

[^5]: ${ }^{7}$ Dunajski, 2009.
 ${ }^{8}$ Drazin and Johnson, 1989.
 ${ }^{9}$ Ablowitz, Kaup, Newell, Segur, 1973.
 ${ }^{10}$ Peregrine, 1983.
 ${ }^{11}$ Akhmediev, Ankiewivz, Taki, 2009.
 ${ }^{12}$ Camassa, Holm, 1993.

[^6]: ${ }^{20}$ Brown and Henneaux, 1986.
 ${ }^{21}$ Compere, Song and Strominger, 2013; Troessaert, 2013; Grumiller and

[^7]: ${ }^{20}$ Brown and Henneaux, 1986.
 ${ }^{21}$ Compere, Song and Strominger, 2013; Troessaert, 2013; Grumiller and

[^8]: ${ }^{20}$ Brown and Henneaux, 1986.
 ${ }^{21}$ Compere, Song and Strominger, 2013; Troessaert, 2013; Grumiller and

