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Motivation
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1. AdS3 General relativity:
I Trivial theory.
I The role of boundary conditions1.
I Black holes2.
I Soft hair3.
I KdV4, KdV/MKdV5, Boussinesq6.
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Motivation

2. Integrable systems.

I Nonlinear differential equations.
I Integrable systems has a special property7: Involution of

charges

{Hn, Hm} = 0.

I Solitons (kink8, breathers9, e.g., Peregrine10, Akhmediev11;
Peakons12.)

I There is an integrable system that encompasses well known
equations, e.g., KdV, MKdV, NlS and sG equations, whose
name is AKNS system13.
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Objectives

(a) General objective: Provide a gravitational framework to study
the AKNS system.

(b) Particular objectives:
I Study the integrability of the AKNS system.
I In the context of AdS3 general relativity, review the role of

boundary conditions.
I Impose boundary conditions to the gravitational field.
I Study the consistency of the boundary conditions.
I Recover an associated metric from the boundary dynamics.
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The AKNS system

In their seminal article of 1973, Ablowitz, Kaup, Newell and Segur
(AKNS) found a system of nonlinear partial differential equations

ṙ + C ′ − 2rA− 2ξC = 0,

ṗ+B′ + 2pA+ 2ξB = 0,

A′ − pC + rB = 0,

where r = r(t, φ) and p = p(t, φ) are dynamical fields, A(t, φ),
B(t, φ) and C(t, φ) are functions that has to be specified and ξ is
a constant.
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The AKNS system

Following their work, assume a finite expansion for A, B and C in
powers of ξ, namely

A =

N∑
n=0

Anξ
N−n, B =

N∑
n=0

Bnξ
N−n, C =

N∑
n=0

Cnξ
N−n.
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The AKNS system

Equating order by order in ξ, we obtain a set of equations from the
coefficients associated to the n−th power of the spectral
parameter

: That is, a set of recurrence relations,

A′n = pCn − rBn,

Bn+1 = −1

2
B′n − pAn,

Cn+1 =
1

2
C ′n − rAn,

B0 = C0 = 0,

with dynamic equations

ṗ = −B′N − 2pAN ,

ṙ = −C ′N + 2rAN .
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The AKNS system

According to the obtained recurrence relations, it is possible to
construct the first terms An, Bn and Cn,

A0 = 1, A1 = 0, A2 = −1

2
pr, A3 =

1

4

(
p′r − pr′

)
,

B0 = 0, B1 = −p, B2 =
1

2
p′, B3 =

1

2
p2r − 1

4
p′′,

C0 = 0, C1 = −r, C2 = −1

2
r′, C3 =

1

2
pr2 − 1

4
r′′.
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The AKNS system
Several well known integrable equations arise as particular cases of
the above construction.

For N = 1 we obtain the chiral boson
equation,

ṗ = p′,

ṙ = r′.

For N = 3,

ṗ = −3

2
pp′r +

1

4
p′′′, ṙ = −3

2
prr′ +

1

4
r′′′,

where, if r = −1, we obtain, in particular, the KdV equation,

ṗ =
3

2
pp′ +

1

4
p′′′,

while, for p = −r, the MKdV equation

ṗ =
3

2
p2p′ +

1

4
p′′′.
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The AKNS system

For N = 2,

ṗ = p2r − 1

2
p′′, ṙ = −pr2 +

1

2
r′′,

we get the (Wicked rotated) nonlinear Schrödinger equation

I The Sine-Gordon equation is also included in this framework,
however, negative powers of ξ must be included in the
expansion in order to make it apparent.
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The AKNS system

Following recursive methods, AKNS realized that the system has
infinite conserved charges,

H2 = −
∫
dφ pr, H3 =

1

4

∫
dφ
(
p′r − pr′

)
, . . .
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The AKNS system

The AKNS system may be written as a bi-Hamiltonian system14(
ṙ

ṗ

)
= D1

(
RN+1

PN+1

)
= D2

(
RN+2

PN+2

)
,

where

D1 =

(
−2r∂−1

φ (r· ) −∂φ + 2r∂−1
φ (p· )

−∂φ + 2p∂−1
φ (r· ) −2p∂−1

φ (p· )

)
, D2 =

(
0 −2
2 0

)
,

and

Rn ≡
δHn

δr
, Pn ≡

δHn

δp
,

with

An =
n− 1

2
Hn, Bn = Rn+1, Cn = Pn+1,

14Tu, 1989.



14/38

The AKNS system

The AKNS system may be written as a bi-Hamiltonian system14(
ṙ
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The AKNS system

Furthermore, the conserved charges are related by the following
recursion formula

D2

(
Rn+1

Pn+1

)
= D1

(
Rn
Pn

)
, n = 1, 2, 3, . . .

As a consequence of the former, the charges of the AKNS system
are in involution, namely,

Ḣn = {Hn, Hm} = 0, n = 1, 2, 3, . . .
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AdS3 general relativity
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AdS3 general relativity
In the vacuum and with negative cosmological constant, general
relativity can be described in terms of two copies of the
Chern-Simons action15

I = ICS [A+]− ICS [A−],

where the gauge field A± = A±t dt+A±ρ dρ+A±φ dφ is spanned in
the Lie algebra g = g+ + g−, where g± denotes the two
independent copies of sl(2,R) whose generators for the two copies
are

L±−1 =

(
0 0
1 0

)
, L±0 =

(
−1/2 0

0 1/2

)
, L±1 =

(
0 −1
0 0

)
,

where the sl(2,R) algebra is[
L±n , L

±
m

]
= (n−m)Ln+m. (1)

15Achúcarro and Townsend, 1986; E. Witten, 1988.
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15Achúcarro and Townsend, 1986; E. Witten, 1988.



17/38

AdS3 general relativity
In the vacuum and with negative cosmological constant, general
relativity can be described in terms of two copies of the
Chern-Simons action15

I = ICS [A+]− ICS [A−],

where the gauge field A± = A±t dt+A±ρ dρ+A±φ dφ is spanned in
the Lie algebra g = g+ + g−, where g± denotes the two
independent copies of sl(2,R) whose generators for the two copies
are

L±−1 =

(
0 0
1 0

)
, L±0 =

(
−1/2 0

0 1/2

)
, L±1 =

(
0 −1
0 0

)
,

where the sl(2,R) algebra is[
L±n , L

±
m

]
= (n−m)Ln+m. (1)
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AdS3 general relativity

The connection splits as A = A+ +A−, where

A± = ω ± e

l
,

with ea = eaµdx
µ the vielbein and ωaµdx

µ the spin connection.

The
action is

ICS [A±] =
k

4π

∫ 〈
A±dA± +

2

3
A±3

〉
,

and F± = dA± +A±2 = 0.
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Hamiltonian formalism

Consider the 2 + 1 splitting A±µ = (A±t ,A
±
i ).

In components, the
action reads

IH = − k

4π

∫
dtd2x εij

〈
A±i Ȧ

±
j −A

±
t F
±
ij

〉
,

where F±ij = ∂iA±j − ∂jA
±
i +

[
A±i ,A

±
j

]
. We can see that A±t is a

Lagrange multiplier and F±ij a constraint of the theory.
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Boundary term

If we want a bonna fide action principle, we must suplement the
action with a surface integral, which is

δB± = − k

2π

∮
ρ→∞

dtdφ
〈
A±t δA

±
φ

〉
.

Hence, we must specify A±t (t, ρ→∞, φ) and A±φ (t, ρ→∞, φ),
in order to integrate the surface term.
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Boundary term

Before proceeding, it is convenient to gauge-away the radial
dependence.

When A± transforms as,

a± = b−1±
(
d+A±

)
b±,

the choice b±(ρ) = e±ρL
±
0 captures completely the radial

dependence, yielding

a±ρ = 0, a±t = a±t (t, φ), a±φ = a±φ (t, φ).
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Boundary conditions

The boundary conditions are

a±φ = ∓2ξ±L0 − p±L±1 + r±L∓1,

a±t =
1

`
(−2A±L0 ±B±L±1 ∓ C±L∓1),

where p± = p±(t, φ) and r± = r±(t, φ) are the fields carrying the
boundary dynamics of the theory, A± = A±(t, φ), B± = B±(t, φ)
and C± = C±(t, φ) are polynomials functions on ξ± that has to be
specified.
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Boundary conditions

Thus, the zero-curvature equation of motion

f±tφ = ∂ta
±
φ − ∂φa

±
t +

[
a±t , a

±
φ

]
= 0,

yields the AKNS system (but in the Chern-Simons formulation)

±ṙ± +
1

`

(
C ′± − 2r±A± − 2ξ±C±

)
= 0,

±ṗ± +
1

`

(
B′± + 2p±A± + 2ξ±B±

)
= 0,

A′± − p±C± + r±B± = 0.
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Boundary conditions

We may consider the same analysis as before, in order to obtain

ṗ = −B′N − 2pAN ,

ṙ = −C ′N + 2rAN ,

A remark.
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Consistency of boundary conditions

The above construction provides a complete framework to address
the question whether the boundary conditions are suitable16

1. Boundary term

δB = − k

2π

∫
dtdφ 〈atδaφ〉

⇒ B =
k

2π

∫
dt

`

N∑
n=0

ξN−nHn+1,

which integrates the surface integral in the action, yielding a
well-defined principle.

16Regge and Teitelboim, 1974.



25/38

Consistency of boundary conditions

The above construction provides a complete framework to address
the question whether the boundary conditions are suitable16

1. Boundary term

δB = − k

2π

∫
dtdφ 〈atδaφ〉

⇒ B =
k

2π

∫
dt

`

N∑
n=0

ξN−nHn+1,

which integrates the surface integral in the action, yielding a
well-defined principle.

16Regge and Teitelboim, 1974.



25/38

Consistency of boundary conditions

The above construction provides a complete framework to address
the question whether the boundary conditions are suitable16

1. Boundary term

δB = − k

2π

∫
dtdφ 〈atδaφ〉

⇒ B =
k

2π

∫
dt

`

N∑
n=0

ξN−nHn+1,

which integrates the surface integral in the action, yielding a
well-defined principle.

16Regge and Teitelboim, 1974.



25/38

Consistency of boundary conditions

The above construction provides a complete framework to address
the question whether the boundary conditions are suitable16

1. Boundary term

δB = − k

2π

∫
dtdφ 〈atδaφ〉

⇒ B =
k

2π

∫
dt

`

N∑
n=0

ξN−nHn+1,

which integrates the surface integral in the action, yielding a
well-defined principle.

16Regge and Teitelboim, 1974.



25/38

Consistency of boundary conditions

The above construction provides a complete framework to address
the question whether the boundary conditions are suitable16

1. Boundary term

δB = − k

2π

∫
dtdφ 〈atδaφ〉

⇒ B =
k

2π

∫
dt

`

N∑
n=0

ξN−nHn+1,

which integrates the surface integral in the action, yielding a
well-defined principle.

16Regge and Teitelboim, 1974.



26/38

Consistency of boundary conditions

2. Asymptotic symmetries. They correspond to the family of
infinitesimal gauge transformations,

δa = dΛ + [a,Λ].

In order to find them, consider a general gauge parameter

Λ = −2αL0 + βL1 − γL−1.

The angular component of the transformation

δaφ = ∂φΛ + [aφ,Λ], ⇒ ∂taφ = ∂φat + [aφ, at]

yields equations analogous to the AKNS system.
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Consistency of boundary conditions

As a result, the functions α, β and γ are

α =
M∑

m=0

(m− 1)

2
Hmξ

M−m, β =
M∑

m=0

Rm+1ξ
M−m, γ =

M∑
m=0

Pm+1ξ
M−m,

where M is a positive integer and labels an infinite family of
permissible gauge transformations. Hence, the infinitesimal
transformation of the fields r and p are

δr = −γ′M + 2rαM , δp = −β′M − 2pαM .
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Consistency of boundary conditions

3. Algebra of charges:

The first class constraint must be
suplemented by a boundary term in order to make it
differentiable17

δQ[Λ] =
k

2π

∮
ρ→∞

dφ
〈
Λ δaφ

〉

⇒ Q[Λ] =
k

2π

M∑
m=0

ξM−mHm+1.

It is possible to prove that the algebra of charges is{
Q[Λ], Q[Λ]

}
= 0.

17Regge, Teitelboim, 1973; Bañados, 1996.
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Consistency of boundary conditions

AdS3 general relativity is trivial from the bulk perspective. Thus,
the dynamical content will be captured by boundary conditions and
holonomies.

The holonomy in the angular coordinate is

M± = Tr

(
P exp

∮
dφ a±φ

)
= 2 cosh

(
2π
√

(ξ±)2 + p±0 r
±
0

)
,

where p± =
∑

n p
±
n e

inφ and r± =
∑

n r
±
n e

inφ.



29/38

Consistency of boundary conditions

AdS3 general relativity is trivial from the bulk perspective. Thus,
the dynamical content will be captured by boundary conditions and
holonomies.

The holonomy in the angular coordinate is

M± = Tr

(
P exp

∮
dφ a±φ

)
= 2 cosh

(
2π
√

(ξ±)2 + p±0 r
±
0

)
,

where p± =
∑

n p
±
n e

inφ and r± =
∑

n r
±
n e

inφ.



29/38

Consistency of boundary conditions

AdS3 general relativity is trivial from the bulk perspective. Thus,
the dynamical content will be captured by boundary conditions and
holonomies.

The holonomy in the angular coordinate is

M± = Tr

(
P exp

∮
dφ a±φ

)

= 2 cosh

(
2π
√

(ξ±)2 + p±0 r
±
0

)
,

where p± =
∑

n p
±
n e

inφ and r± =
∑

n r
±
n e

inφ.



29/38

Consistency of boundary conditions

AdS3 general relativity is trivial from the bulk perspective. Thus,
the dynamical content will be captured by boundary conditions and
holonomies.

The holonomy in the angular coordinate is

M± = Tr

(
P exp

∮
dφ a±φ

)
= 2 cosh

(
2π
√

(ξ±)2 + p±0 r
±
0

)
,

where p± =
∑

n p
±
n e

inφ and r± =
∑

n r
±
n e

inφ.



29/38

Consistency of boundary conditions

AdS3 general relativity is trivial from the bulk perspective. Thus,
the dynamical content will be captured by boundary conditions and
holonomies.

The holonomy in the angular coordinate is

M± = Tr

(
P exp

∮
dφ a±φ

)
= 2 cosh

(
2π
√

(ξ±)2 + p±0 r
±
0

)
,

where p± =
∑

n p
±
n e

inφ and r± =
∑

n r
±
n e

inφ.



30/38

Consistency of boundary conditions

M± = 2 cosh

(
2π
√

(ξ±)2 + p±0 r
±
0

)
,

What does represent the previous result, physically? According to
[Martinec, 1998],

I If M± < 2, the configuration represent classical particle
sources, inducing conical singularities.

I M± > 2 typifies black hole solutions.

I M± = 2, leads to extremal black holes configurations.

Remarkably, the three above configurations are attainable.
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Consistency of boundary conditions

It is important to say that any solution of Einstein’s equations in
three dimensions with a negative cosmological constant
corresponds to a spacetime of constant negative curvature.

Thus, its geometry coincides locally AdS3. The only difference
resides in its global properties18.

18Bañados, Henneaux, Teitelboim and Zanelli, 1993.
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Construction of the metric

We can recover the metric,

gµν =
`2

2

〈(
A+
µ −A−µ

) (
A+
ν −A−ν

)〉
.

In ADM coordinates

ds2 = −N2dt2 + γij(N
idt+ dxi)(N jdt+ dxj),

with i = ρ, φ, we obtain
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Construction of the metric

the lapse function

N2 =
ρ2

4`2
(Ω+ω− + Ω−ω+)

2

ω−ω+
,

the shift vectors

Nρ =
ρ

`

(
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Construction of the metric

where the auxiliary functions Ω± and ω± are defined as

Ω± ≡ B± − `2

ρ2
C∓, ω± ≡ p± +

`2

ρ2
r∓,

with ` the AdS3 radius.

The Einstein equations

Rµν −
1

2
gµνR−

1

`2
gµν = 0,

reduces to the AKNS system19.

19
Ablowitz, Kaup, Newell, Segur, 1973.
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Final remarks

The familiy of boundary conditions constructed here encompasses
some examples found in the literature.

I The Brown-Henneaux boundary conditions20 may be
recovered when N± = 1, r± = 1 and then setting ξ± = 0.

I Additionally, the family of KdV boundary conditions found in
[Pérez, Tempo and Troncoso (2016)] is recovered for r± = 1,
odd values of N± and vanishing ξ±. A detailed discussion of
how this work relates to several other boundary conditions for
AdS3 gravity21, will be given in future works.

20Brown and Henneaux, 1986.
21Compere, Song and Strominger, 2013; Troessaert, 2013; Grumiller and

Riegler, 2016; Ojeda and Pérez, 2019.
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Conclusions

1. We studied the integrable system known as AKNS system.

2. We studied its spacetime geometrization in 2 + 1 dimensions,
i.e., we constructed a bonna fide action principle, we found its
asymptotic symmetries, we computed the algebra of charges
and we proved that gravitational configurations, such as black
holes, are attainable.

3. Further work must be done, such as thermodynamics, higher
spins extensions, Hamiltonian reduction, etc.
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Thank you for your attention!
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