Spacetime dynamics and integrable systems

M. Cárdenas¹, F. Correa², K. Lara¹ and M. Pino,¹

¹Departamento de Física Universidad de Santiago de Chile

²Instituto de Ciencias Físicas y Matemáticas Universidad Austral de Chile

IMTP, Moscow, 9th Juny 2021.

arXiv:2104.09676 [hep-th].

Table of Contents

Motivation

The AKNS system

 AdS_3 general relativity

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

The motivation are two fold:

The motivation are two fold:

1. AdS_3 General relativity:

The motivation are two fold:

1. AdS_3 General relativity:

Trivial theory.

The motivation are two fold:

- 1. AdS_3 General relativity:
 - Trivial theory.
 - The role of boundary conditions¹.

¹Brown, Henneaux, 1986; Coussaert, Henneaux and Van Driel, 1995. ▶ < @ ▶ < 토 ▶ < 토 ▶ = ♡ < ♡ _{3/38}

The motivation are two fold:

- 1. AdS_3 General relativity:
 - Trivial theory.
 - The role of boundary conditions¹.
 - Black holes².

э

< ∃ >

¹Brown, Henneaux, 1986; Coussaert, Henneaux and Van Driel, 1995.

²Bañados, Teitelboim, Zanelli, 1992; Bañados, Henneaux, Teitelboim, Zanelli, 1993.

The motivation are two fold:

- 1. AdS_3 General relativity:
 - Trivial theory.
 - The role of boundary conditions¹.
 - Black holes².
 - Soft hair³.

¹Brown, Henneaux, 1986; Coussaert, Henneaux and Van Driel, 1995.

²Bañados, Teitelboim, Zanelli, 1992; Bañados, Henneaux, Teitelboim, Zanelli, 1993.

³Hawking, Perry and Strominger, 2016.

The motivation are two fold:

- 1. AdS_3 General relativity:
 - Trivial theory.
 - The role of boundary conditions¹.
 - Black holes².
 - Soft hair³.
 - ► KdV⁴, KdV/MKdV⁵, Boussinesq⁶.

¹Brown, Henneaux, 1986; Coussaert, Henneaux and Van Driel, 1995.

²Bañados, Teitelboim, Zanelli, 1992; Bañados, Henneaux, Teitelboim, Zanelli, 1993.

³Hawking, Perry and Strominger, 2016.

⁵Ojeda, Pérez, 2019.

⁴Pérez, Tempo and Troncoso, 2016.

⁶Ojeda, Pérez, 2020.

2. Integrable systems.

2. Integrable systems.

Nonlinear differential equations.

2. Integrable systems.

- Nonlinear differential equations.
- Integrable systems has a special property⁷: Involution of charges

$$\{H_n, H_m\} = 0.$$

4/38

⁷Dunajski, 2009.

- 2. Integrable systems.
 - Nonlinear differential equations.
 - Integrable systems has a special property⁷: Involution of charges

$$\{H_n, H_m\} = 0.$$

Solitons (kink⁸, breathers⁹, e.g., Peregrine¹⁰, Akhmediev¹¹; Peakons¹².)

⁷Dunajski, 2009. ⁸Drazin and Johnson, 1989. ⁹Ablowitz, Kaup, Newell, Segur, 1973. ¹⁰Peregrine, 1983. ¹¹Akhmediev, Ankiewivz, Taki, 2009. ¹²Camassa, Holm, 1993.

- 2. Integrable systems.
 - Nonlinear differential equations.
 - Integrable systems has a special property⁷: Involution of charges

$$\{H_n, H_m\} = 0.$$

- Solitons (kink⁸, breathers⁹, e.g., Peregrine¹⁰, Akhmediev¹¹; Peakons¹².)
- There is an integrable system that encompasses well known equations, e.g., KdV, MKdV, NIS and sG equations, whose name is AKNS system¹³.

⁷ Dunajski, 2009.
⁸ Drazin and Johnson, 1989.
⁹ Ablowitz, Kaup, Newell, Segur, 1973.
¹⁰ Peregrine, 1983.
¹¹ Akhmediev, Ankiewivz, Taki, 2009.
¹² Camassa, Holm, 1993.
¹³ Ablowitz, Kaup, Newell, Segur, 1973.

4/38

< 四 > < 圖 > < 圖 > < 圖 > < 圖 >

(a) General objective: Provide a gravitational framework to study the AKNS system.

- (a) General objective: Provide a gravitational framework to study the AKNS system.
- (b) Particular objectives:

- (a) General objective: Provide a gravitational framework to study the AKNS system.
- (b) Particular objectives:
 - Study the integrability of the AKNS system.

- (a) General objective: Provide a gravitational framework to study the AKNS system.
- (b) Particular objectives:
 - Study the integrability of the AKNS system.
 - In the context of AdS₃ general relativity, review the role of boundary conditions.

- (a) General objective: Provide a gravitational framework to study the AKNS system.
- (b) Particular objectives:
 - Study the integrability of the AKNS system.
 - In the context of AdS₃ general relativity, review the role of boundary conditions.
 - Impose boundary conditions to the gravitational field.

- (a) General objective: Provide a gravitational framework to study the AKNS system.
- (b) Particular objectives:
 - Study the integrability of the AKNS system.
 - In the context of AdS₃ general relativity, review the role of boundary conditions.
 - Impose boundary conditions to the gravitational field.
 - Study the consistency of the boundary conditions.

- (a) General objective: Provide a gravitational framework to study the AKNS system.
- (b) Particular objectives:
 - Study the integrability of the AKNS system.
 - In the context of AdS₃ general relativity, review the role of boundary conditions.
 - Impose boundary conditions to the gravitational field.
 - Study the consistency of the boundary conditions.
 - Recover an associated metric from the boundary dynamics.

In their seminal article of 1973, Ablowitz, Kaup, Newell and Segur (AKNS) found a system of nonlinear partial differential equations

In their seminal article of 1973, Ablowitz, Kaup, Newell and Segur (AKNS) found a system of nonlinear partial differential equations

$$\dot{r} + C' - 2rA - 2\xi C = 0,$$

 $\dot{p} + B' + 2pA + 2\xi B = 0,$
 $A' - pC + rB = 0,$

In their seminal article of 1973, Ablowitz, Kaup, Newell and Segur (AKNS) found a system of nonlinear partial differential equations

$$\dot{r} + C' - 2rA - 2\xi C = 0,$$

 $\dot{p} + B' + 2pA + 2\xi B = 0,$
 $A' - pC + rB = 0,$

where $r=r(t,\phi)$ and $p=p(t,\phi)$ are dynamical fields

In their seminal article of 1973, Ablowitz, Kaup, Newell and Segur (AKNS) found a system of nonlinear partial differential equations

$$\dot{r} + C' - 2rA - 2\xi C = 0,$$

 $\dot{p} + B' + 2pA + 2\xi B = 0,$
 $A' - pC + rB = 0,$

where $r = r(t, \phi)$ and $p = p(t, \phi)$ are dynamical fields, $A(t, \phi)$, $B(t, \phi)$ and $C(t, \phi)$ are functions that has to be specified

In their seminal article of 1973, Ablowitz, Kaup, Newell and Segur (AKNS) found a system of nonlinear partial differential equations

$$\dot{r} + C' - 2rA - 2\xi C = 0,$$

 $\dot{p} + B' + 2pA + 2\xi B = 0,$
 $A' - pC + rB = 0,$

where $r = r(t, \phi)$ and $p = p(t, \phi)$ are dynamical fields, $A(t, \phi)$, $B(t, \phi)$ and $C(t, \phi)$ are functions that has to be specified and ξ is a constant.

Following their work, assume a finite expansion for A, B and C in powers of ξ , namely

Following their work, assume a finite expansion for A, B and C in powers of ξ , namely

$$A = \sum_{n=0}^{N} A_n \xi^{N-n}, \ B = \sum_{n=0}^{N} B_n \xi^{N-n}, \ C = \sum_{n=0}^{N} C_n \xi^{N-n}.$$

Equating order by order in $\xi,$ we obtain a set of equations from the coefficients associated to the $n-{\rm th}$ power of the spectral parameter

Equating order by order in ξ , we obtain a set of equations from the coefficients associated to the n-th power of the spectral parameter: That is, a set of recurrence relations,

Equating order by order in ξ , we obtain a set of equations from the coefficients associated to the n-th power of the spectral parameter: That is, a set of recurrence relations,

$$A'_{n} = pC_{n} - rB_{n},$$

$$B_{n+1} = -\frac{1}{2}B'_{n} - pA_{n},$$

$$C_{n+1} = \frac{1}{2}C'_{n} - rA_{n},$$

$$B_{0} = C_{0} = 0,$$

Equating order by order in ξ , we obtain a set of equations from the coefficients associated to the n-th power of the spectral parameter: That is, a set of recurrence relations,

$$A'_{n} = pC_{n} - rB_{n},$$

$$B_{n+1} = -\frac{1}{2}B'_{n} - pA_{n},$$

$$C_{n+1} = \frac{1}{2}C'_{n} - rA_{n},$$

$$B_{0} = C_{0} = 0,$$

with dynamic equations

$$\dot{p} = -B'_N - 2pA_N,$$
$$\dot{r} = -C'_N + 2rA_N.$$

According to the obtained recurrence relations, it is possible to construct the first terms $A_n,\,B_n$ and $C_n,\,$

$$A_{0} = 1, \quad A_{1} = 0, \quad A_{2} = -\frac{1}{2}pr, \quad A_{3} = \frac{1}{4}\left(p'r - pr'\right),$$

$$B_{0} = 0, \quad B_{1} = -p, \quad B_{2} = \frac{1}{2}p', \quad B_{3} = \frac{1}{2}p^{2}r - \frac{1}{4}p'',$$

$$C_{0} = 0, \quad C_{1} = -r, \quad C_{2} = -\frac{1}{2}r', \quad C_{3} = \frac{1}{2}pr^{2} - \frac{1}{4}r''.$$

Several well known integrable equations arise as particular cases of the above construction.

Several well known integrable equations arise as particular cases of the above construction. For ${\cal N}=1$ we obtain the chiral boson equation,

$$\dot{p} = p',$$

 $\dot{r} = r'.$

Several well known integrable equations arise as particular cases of the above construction. For ${\cal N}=1$ we obtain the chiral boson equation,

$$\dot{p} = p',$$

 $\dot{r} = r'.$

Several well known integrable equations arise as particular cases of the above construction. For ${\cal N}=1$ we obtain the chiral boson equation,

$$\dot{p} = p',$$

 $\dot{r} = r'.$

For N=3, $\dot{p}=-\frac{3}{2}pp'r+\frac{1}{4}p''', \quad \dot{r}=-\frac{3}{2}prr'+\frac{1}{4}r''',$

Several well known integrable equations arise as particular cases of the above construction. For ${\cal N}=1$ we obtain the chiral boson equation,

$$\dot{p} = p',$$

 $\dot{r} = r'.$

For N = 3,

$$\dot{p} = -\frac{3}{2}pp'r + \frac{1}{4}p''', \quad \dot{r} = -\frac{3}{2}prr' + \frac{1}{4}r''',$$

where, if r = -1, we obtain, in particular, the KdV equation,

$$\dot{p} = \frac{3}{2}pp' + \frac{1}{4}p''',$$

Several well known integrable equations arise as particular cases of the above construction. For ${\cal N}=1$ we obtain the chiral boson equation,

$$\dot{p} = p',$$

 $\dot{r} = r'.$

For N = 3,

$$\dot{p} = -\frac{3}{2}pp'r + \frac{1}{4}p''', \quad \dot{r} = -\frac{3}{2}prr' + \frac{1}{4}r''',$$

where, if r = -1, we obtain, in particular, the KdV equation,

$$\dot{p} = \frac{3}{2}pp' + \frac{1}{4}p''',$$

while, for p = -r, the MKdV equation

$$\dot{p} = \frac{3}{2}p^2p' + \frac{1}{4}p'''.$$

For
$$N=2$$
,
$$\dot{p}=p^{2}r-\frac{1}{2}p'', \quad \dot{r}=-pr^{2}+\frac{1}{2}r'',$$

we get the (Wicked rotated) nonlinear Schrödinger equation

For N = 2,

$$\dot{p} = p^2 r - \frac{1}{2} p'', \quad \dot{r} = -pr^2 + \frac{1}{2}r'',$$

we get the (Wicked rotated) nonlinear Schrödinger equation

The Sine-Gordon equation is also included in this framework, however, negative powers of ξ must be included in the expansion in order to make it apparent.

Following recursive methods, AKNS realized that the system has infinite conserved charges,

$$H_2 = -\int d\phi \ pr, \quad H_3 = \frac{1}{4} \int d\phi \ \left(p'r - pr'\right), \quad \dots$$

The AKNS system may be written as a bi-Hamiltonian system¹⁴

$$\begin{pmatrix} \dot{r} \\ \dot{p} \end{pmatrix} = \mathcal{D}_1 \begin{pmatrix} \mathcal{R}_{N+1} \\ \mathcal{P}_{N+1} \end{pmatrix} = \mathcal{D}_2 \begin{pmatrix} \mathcal{R}_{N+2} \\ \mathcal{P}_{N+2} \end{pmatrix},$$

¹⁴Tu, 1989.

<ロ ト < 部 ト < 三 ト < 三 ト ラ へ へ 14/38

The AKNS system may be written as a bi-Hamiltonian system¹⁴

$$\begin{pmatrix} \dot{r} \\ \dot{p} \end{pmatrix} = \mathcal{D}_1 \begin{pmatrix} \mathcal{R}_{N+1} \\ \mathcal{P}_{N+1} \end{pmatrix} = \mathcal{D}_2 \begin{pmatrix} \mathcal{R}_{N+2} \\ \mathcal{P}_{N+2} \end{pmatrix},$$

where

$$\mathcal{D}_1 = \begin{pmatrix} -2r\partial_{\phi}^{-1}(r \cdot) & -\partial_{\phi} + 2r\partial_{\phi}^{-1}(p \cdot) \\ -\partial_{\phi} + 2p\partial_{\phi}^{-1}(r \cdot) & -2p\partial_{\phi}^{-1}(p \cdot) \end{pmatrix}, \quad \mathcal{D}_2 = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix},$$

¹⁴Tu, 1989.

The AKNS system may be written as a bi-Hamiltonian system¹⁴

$$\begin{pmatrix} \dot{r} \\ \dot{p} \end{pmatrix} = \mathcal{D}_1 \begin{pmatrix} \mathcal{R}_{N+1} \\ \mathcal{P}_{N+1} \end{pmatrix} = \mathcal{D}_2 \begin{pmatrix} \mathcal{R}_{N+2} \\ \mathcal{P}_{N+2} \end{pmatrix},$$

where

$$\mathcal{D}_1 = \begin{pmatrix} -2r\partial_{\phi}^{-1}(r \cdot) & -\partial_{\phi} + 2r\partial_{\phi}^{-1}(p \cdot) \\ -\partial_{\phi} + 2p\partial_{\phi}^{-1}(r \cdot) & -2p\partial_{\phi}^{-1}(p \cdot) \end{pmatrix}, \quad \mathcal{D}_2 = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix},$$

and

$$\mathcal{R}_n \equiv \frac{\delta H_n}{\delta r}, \quad \mathcal{P}_n \equiv \frac{\delta H_n}{\delta p},$$

¹⁴Tu, 1989.

The AKNS system may be written as a bi-Hamiltonian system¹⁴

$$\begin{pmatrix} \dot{r} \\ \dot{p} \end{pmatrix} = \mathcal{D}_1 \begin{pmatrix} \mathcal{R}_{N+1} \\ \mathcal{P}_{N+1} \end{pmatrix} = \mathcal{D}_2 \begin{pmatrix} \mathcal{R}_{N+2} \\ \mathcal{P}_{N+2} \end{pmatrix},$$

where

$$\mathcal{D}_1 = \begin{pmatrix} -2r\partial_{\phi}^{-1}(r\cdot) & -\partial_{\phi} + 2r\partial_{\phi}^{-1}(p\cdot) \\ -\partial_{\phi} + 2p\partial_{\phi}^{-1}(r\cdot) & -2p\partial_{\phi}^{-1}(p\cdot) \end{pmatrix}, \quad \mathcal{D}_2 = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix},$$

and

$$\mathcal{R}_n \equiv \frac{\delta H_n}{\delta r}, \quad \mathcal{P}_n \equiv \frac{\delta H_n}{\delta p},$$

with

$$A_n = \frac{n-1}{2}\mathcal{H}_n, \quad B_n = \mathcal{R}_{n+1}, \quad C_n = \mathcal{P}_{n+1},$$

¹⁴Tu, 1989.

4 日 > 4 個 > 4 目 > 4 目 > 目 の へ の

Furthermore, the conserved charges are related by the following recursion formula

$$\mathcal{D}_2\begin{pmatrix} \mathcal{R}_{n+1}\\ \mathcal{P}_{n+1} \end{pmatrix} = \mathcal{D}_1\begin{pmatrix} \mathcal{R}_n\\ \mathcal{P}_n \end{pmatrix}, \quad n = 1, 2, 3, \dots$$

15/38

Furthermore, the conserved charges are related by the following recursion formula

$$\mathcal{D}_2\begin{pmatrix} \mathcal{R}_{n+1}\\ \mathcal{P}_{n+1} \end{pmatrix} = \mathcal{D}_1\begin{pmatrix} \mathcal{R}_n\\ \mathcal{P}_n \end{pmatrix}, \quad n = 1, 2, 3, \dots$$

As a consequence of the former, the charges of the AKNS system are in involution, namely,

Furthermore, the conserved charges are related by the following recursion formula

$$\mathcal{D}_2\begin{pmatrix} \mathcal{R}_{n+1}\\ \mathcal{P}_{n+1} \end{pmatrix} = \mathcal{D}_1\begin{pmatrix} \mathcal{R}_n\\ \mathcal{P}_n \end{pmatrix}, \quad n = 1, 2, 3, \dots$$

As a consequence of the former, the charges of the AKNS system are in involution, namely,

$$\dot{H}_n = \{H_n, H_m\} = 0, \quad n = 1, 2, 3, \dots$$

In the vacuum and with negative cosmological constant, general relativity can be described in terms of two copies of the Chern-Simons action $^{15}\,$

$$I = I_{CS}[\mathcal{A}^+] - I_{CS}[\mathcal{A}^-],$$

In the vacuum and with negative cosmological constant, general relativity can be described in terms of two copies of the Chern-Simons action $^{15}\,$

$$I = I_{CS}[\mathcal{A}^+] - I_{CS}[\mathcal{A}^-],$$

where the gauge field $\mathcal{A}^{\pm} = \mathcal{A}_t^{\pm} dt + \mathcal{A}_{\rho}^{\pm} d\rho + \mathcal{A}_{\phi}^{\pm} d\phi$ is spanned in the Lie algebra $\mathfrak{g} = \mathfrak{g}_+ + \mathfrak{g}_-$, where \mathfrak{g}_{\pm} denotes the two independent copies of $sl(2,\mathbb{R})$

¹⁵Achúcarro and Townsend, 1986; E. Witten, 1988. (□) + (=

In the vacuum and with negative cosmological constant, general relativity can be described in terms of two copies of the Chern-Simons action $^{15}\,$

$$I = I_{CS}[\mathcal{A}^+] - I_{CS}[\mathcal{A}^-],$$

where the gauge field $\mathcal{A}^{\pm} = \mathcal{A}_t^{\pm} dt + \mathcal{A}_{\rho}^{\pm} d\rho + \mathcal{A}_{\phi}^{\pm} d\phi$ is spanned in the Lie algebra $\mathfrak{g} = \mathfrak{g}_+ + \mathfrak{g}_-$, where \mathfrak{g}_{\pm} denotes the two independent copies of $sl(2,\mathbb{R})$ whose generators for the two copies are

In the vacuum and with negative cosmological constant, general relativity can be described in terms of two copies of the Chern-Simons action 15

$$I = I_{CS}[\mathcal{A}^+] - I_{CS}[\mathcal{A}^-],$$

where the gauge field $\mathcal{A}^{\pm} = \mathcal{A}_t^{\pm} dt + \mathcal{A}_{\rho}^{\pm} d\rho + \mathcal{A}_{\phi}^{\pm} d\phi$ is spanned in the Lie algebra $\mathfrak{g} = \mathfrak{g}_+ + \mathfrak{g}_-$, where \mathfrak{g}_{\pm} denotes the two independent copies of $sl(2,\mathbb{R})$ whose generators for the two copies are

$$L_{-1}^{\pm} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
, $L_{0}^{\pm} = \begin{pmatrix} -1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$, $L_{1}^{\pm} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$,

¹⁵Achúcarro and Townsend, 1986; E. Witten, 1988. @→ < ≧→ < ≧→ < ≧→ S < ⊙ < ∩7/3

In the vacuum and with negative cosmological constant, general relativity can be described in terms of two copies of the Chern-Simons action 15

$$I = I_{CS}[\mathcal{A}^+] - I_{CS}[\mathcal{A}^-],$$

where the gauge field $\mathcal{A}^{\pm} = \mathcal{A}_t^{\pm} dt + \mathcal{A}_{\rho}^{\pm} d\rho + \mathcal{A}_{\phi}^{\pm} d\phi$ is spanned in the Lie algebra $\mathfrak{g} = \mathfrak{g}_+ + \mathfrak{g}_-$, where \mathfrak{g}_{\pm} denotes the two independent copies of $sl(2,\mathbb{R})$ whose generators for the two copies are

$$L_{-1}^{\pm} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} , \ L_{0}^{\pm} = \begin{pmatrix} -1/2 & 0 \\ 0 & 1/2 \end{pmatrix} , \ L_{1}^{\pm} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} ,$$

where the $sl(2,\mathbb{R})$ algebra is

$$\left[L_n^{\pm}, L_m^{\pm}\right] = (n-m)L_{n+m}.$$

¹⁵Achúcarro and Townsend, 1986; E. Witten, 1988. $\square \rightarrow \square \square \rightarrow \square \square \rightarrow \square \square \square$

The connection splits as $\mathcal{A} = \mathcal{A}^+ + \mathcal{A}^-$, where

$$\mathcal{A}^{\pm} = \omega \pm \frac{e}{l},$$

with $e^a=e^a_\mu dx^\mu$ the vielbein and $\omega^a_\mu dx^\mu$ the spin connection.

The connection splits as $\mathcal{A} = \mathcal{A}^+ + \mathcal{A}^-$, where

$$\mathcal{A}^{\pm} = \omega \pm \frac{e}{l},$$

with $e^a=e^a_\mu dx^\mu$ the vielbein and $\omega^a_\mu dx^\mu$ the spin connection. The action is

$$I_{CS}[\mathcal{A}^{\pm}] = \frac{k}{4\pi} \int \left\langle \mathcal{A}^{\pm} d\mathcal{A}^{\pm} + \frac{2}{3} \mathcal{A}^{\pm 3} \right\rangle,$$

and $F^{\pm} = d\mathcal{A}^{\pm} + \mathcal{A}^{\pm 2} = 0.$

Consider the 2+1 splitting $\mathcal{A}^{\pm}_{\mu} = (\mathcal{A}^{\pm}_t, \mathcal{A}^{\pm}_i).$

Consider the 2+1 splitting $\mathcal{A}_{\mu}^{\pm}=(\mathcal{A}_t^{\pm},\mathcal{A}_i^{\pm}).$ In components, the action reads

$$I_H = -\frac{k}{4\pi} \int dt d^2 x \ \epsilon^{ij} \left\langle A_i^{\pm} \dot{A}_j^{\pm} - A_t^{\pm} F_{ij}^{\pm} \right\rangle,$$

Consider the 2+1 splitting $\mathcal{A}_{\mu}^{\pm}=(\mathcal{A}_t^{\pm},\mathcal{A}_i^{\pm}).$ In components, the action reads

$$\begin{split} I_{H} &= -\frac{k}{4\pi} \int dt d^{2}x \; \epsilon^{ij} \left\langle A_{i}^{\pm} \dot{A}_{j}^{\pm} - A_{t}^{\pm} F_{ij}^{\pm} \right\rangle, \\ \text{where } F_{ij}^{\pm} &= \partial_{i} \mathcal{A}_{j}^{\pm} - \partial_{j} \mathcal{A}_{i}^{\pm} + \left[\mathcal{A}_{i}^{\pm}, \mathcal{A}_{j}^{\pm} \right]. \end{split}$$

Consider the 2+1 splitting $\mathcal{A}_{\mu}^{\pm}=(\mathcal{A}_t^{\pm},\mathcal{A}_i^{\pm}).$ In components, the action reads

$$I_H = -\frac{k}{4\pi} \int dt d^2 x \ \epsilon^{ij} \left\langle A_i^{\pm} \dot{A}_j^{\pm} - A_t^{\pm} F_{ij}^{\pm} \right\rangle,$$

where $F_{ij}^{\pm} = \partial_i \mathcal{A}_j^{\pm} - \partial_j \mathcal{A}_i^{\pm} + \left[\mathcal{A}_i^{\pm}, \mathcal{A}_j^{\pm}\right]$. We can see that \mathcal{A}_t^{\pm} is a Lagrange multiplier and F_{ij}^{\pm} a constraint of the theory.

If we want a bonna fide action principle, we must suplement the action with a surface integral, which is

$$\delta \mathcal{B}^{\pm} = -\frac{k}{2\pi} \oint_{\rho \to \infty} dt d\phi \left\langle A_t^{\pm} \, \delta A_{\phi}^{\pm} \right\rangle.$$

If we want a bonna fide action principle, we must suplement the action with a surface integral, which is

$$\delta \mathcal{B}^{\pm} = -\frac{k}{2\pi} \oint_{\rho \to \infty} dt d\phi \left\langle A_t^{\pm} \, \delta A_{\phi}^{\pm} \right\rangle.$$

Hence, we must specify $A_t^{\pm}(t, \rho \to \infty, \phi)$ and $A_{\phi}^{\pm}(t, \rho \to \infty, \phi)$, in order to integrate the surface term.

Boundary term

Before proceeding, it is convenient to gauge-away the radial dependence.

Boundary term

Before proceeding, it is convenient to gauge-away the radial dependence. When \mathcal{A}^\pm transforms as,

$$a^{\pm} = b_{\pm}^{-1} \left(d + \mathcal{A}^{\pm} \right) b_{\pm},$$

Boundary term

Before proceeding, it is convenient to gauge-away the radial dependence. When \mathcal{A}^\pm transforms as,

$$a^{\pm} = b_{\pm}^{-1} \left(d + \mathcal{A}^{\pm} \right) b_{\pm},$$

the choice $b_{\pm}(\rho)=e^{\pm\rho L_0^{\pm}}$ captures completely the radial dependence, yielding

$$a^\pm_\rho=0, \quad a^\pm_t=a^\pm_t(t,\phi), \quad a^\pm_\phi=a^\pm_\phi(t,\phi).$$

The boundary conditions are

$$a_{\phi}^{\pm} = \mp 2\xi^{\pm}L_0 - p^{\pm}L_{\pm 1} + r^{\pm}L_{\mp 1},$$

$$a_t^{\pm} = \frac{1}{\ell}(-2A^{\pm}L_0 \pm B^{\pm}L_{\pm 1} \mp C^{\pm}L_{\mp 1}),$$

The boundary conditions are

$$a_{\phi}^{\pm} = \mp 2\xi^{\pm}L_0 - p^{\pm}L_{\pm 1} + r^{\pm}L_{\mp 1},$$

$$a_t^{\pm} = \frac{1}{\ell}(-2A^{\pm}L_0 \pm B^{\pm}L_{\pm 1} \mp C^{\pm}L_{\mp 1}),$$

where $p^{\pm} = p^{\pm}(t,\phi)$ and $r^{\pm} = r^{\pm}(t,\phi)$ are the fields carrying the boundary dynamics of the theory, $A^{\pm} = A^{\pm}(t,\phi)$, $B^{\pm} = B^{\pm}(t,\phi)$ and $C^{\pm} = C^{\pm}(t,\phi)$ are polynomials functions on ξ^{\pm} that has to be specified.

Thus, the zero-curvature equation of motion

$$f_{t\phi}^{\pm} = \partial_t a_{\phi}^{\pm} - \partial_{\phi} a_t^{\pm} + \left[a_t^{\pm}, a_{\phi}^{\pm}\right] = 0,$$

Thus, the zero-curvature equation of motion

$$f_{t\phi}^{\pm} = \partial_t a_{\phi}^{\pm} - \partial_{\phi} a_t^{\pm} + \left[a_t^{\pm}, a_{\phi}^{\pm}\right] = 0,$$

yields the AKNS system (but in the Chern-Simons formulation)

$$\pm \dot{r}^{\pm} + \frac{1}{\ell} \left(C'^{\pm} - 2r^{\pm}A^{\pm} - 2\xi^{\pm}C^{\pm} \right) = 0,$$

$$\pm \dot{p}^{\pm} + \frac{1}{\ell} \left(B'^{\pm} + 2p^{\pm}A^{\pm} + 2\xi^{\pm}B^{\pm} \right) = 0,$$

$$A'^{\pm} - p^{\pm}C^{\pm} + r^{\pm}B^{\pm} = 0.$$

23/38

We may consider the same analysis as before, in order to obtain

Boundary conditions

We may consider the same analysis as before, in order to obtain

$$\dot{p} = -B'_N - 2pA_N,$$

$$\dot{r} = -C'_N + 2rA_N,$$

Boundary conditions

We may consider the same analysis as before, in order to obtain

$$\dot{p} = -B'_N - 2pA_N,$$

$$\dot{r} = -C'_N + 2rA_N,$$

A remark.

The above construction provides a complete framework to address the question whether the boundary conditions are suitable $^{16}\,$

The above construction provides a complete framework to address the question whether the boundary conditions are suitable $^{16}\,$

1. Boundary term

The above construction provides a complete framework to address the question whether the boundary conditions are suitable $^{16}\,$

1. Boundary term

$$\delta \mathcal{B} = -\frac{k}{2\pi} \int dt d\phi \left\langle a_t \delta a_\phi \right\rangle$$

The above construction provides a complete framework to address the question whether the boundary conditions are suitable $^{16}\,$

1. Boundary term

$$\delta \mathcal{B} = -\frac{k}{2\pi} \int dt d\phi \, \langle a_t \delta a_\phi \rangle$$

$$\Rightarrow \mathcal{B} = \frac{k}{2\pi} \int \frac{dt}{\ell} \sum_{n=0}^N \xi^{N-n} H_{n+1},$$

The above construction provides a complete framework to address the question whether the boundary conditions are suitable 16

1. Boundary term

$$\delta \mathcal{B} = -\frac{k}{2\pi} \int dt d\phi \, \langle a_t \delta a_\phi \rangle$$

$$\Rightarrow \mathcal{B} = \frac{k}{2\pi} \int \frac{dt}{\ell} \sum_{n=0}^N \xi^{N-n} H_{n+1},$$

which integrates the surface integral in the action, yielding a well-defined principle.

2. Asymptotic symmetries. They correspond to the family of infinitesimal gauge transformations,

26/38

2. Asymptotic symmetries. They correspond to the family of infinitesimal gauge transformations,

$$\delta a = d\Lambda + [a, \Lambda].$$

26/38

2. <u>Asymptotic symmetries</u>. They correspond to the family of infinitesimal gauge transformations,

$$\delta a = d\Lambda + [a, \Lambda].$$

In order to find them, consider a general gauge parameter

$$\Lambda = -2\alpha L_0 + \beta L_1 - \gamma L_{-1}.$$

2. <u>Asymptotic symmetries</u>. They correspond to the family of infinitesimal gauge transformations,

$$\delta a = d\Lambda + [a, \Lambda].$$

In order to find them, consider a general gauge parameter

$$\Lambda = -2\alpha L_0 + \beta L_1 - \gamma L_{-1}.$$

The angular component of the transformation

2. <u>Asymptotic symmetries</u>. They correspond to the family of infinitesimal gauge transformations,

$$\delta a = d\Lambda + [a, \Lambda].$$

In order to find them, consider a general gauge parameter

$$\Lambda = -2\alpha L_0 + \beta L_1 - \gamma L_{-1}.$$

The angular component of the transformation

$$\delta a_{\phi} = \partial_{\phi} \Lambda + [a_{\phi}, \Lambda],$$

2. <u>Asymptotic symmetries</u>. They correspond to the family of infinitesimal gauge transformations,

$$\delta a = d\Lambda + [a, \Lambda].$$

In order to find them, consider a general gauge parameter

$$\Lambda = -2\alpha L_0 + \beta L_1 - \gamma L_{-1}.$$

The angular component of the transformation

$$\delta a_{\phi} = \partial_{\phi} \Lambda + [a_{\phi}, \Lambda],$$

yields equations analogous to the AKNS system.

2. <u>Asymptotic symmetries</u>. They correspond to the family of infinitesimal gauge transformations,

$$\delta a = d\Lambda + [a, \Lambda].$$

In order to find them, consider a general gauge parameter

$$\Lambda = -2\alpha L_0 + \beta L_1 - \gamma L_{-1}.$$

The angular component of the transformation

$$\delta a_{\phi} = \partial_{\phi} \Lambda + [a_{\phi}, \Lambda], \quad \Rightarrow \partial_t a_{\phi} = \partial_{\phi} a_t + [a_{\phi}, a_t]$$

yields equations analogous to the AKNS system.

As a result, the functions $\alpha \text{, }\beta$ and γ are

$$\alpha = \sum_{m=0}^{M} \frac{(m-1)}{2} \mathcal{H}_{m} \xi^{M-m}, \quad \beta = \sum_{m=0}^{M} \mathcal{R}_{m+1} \xi^{M-m}, \quad \gamma = \sum_{m=0}^{M} \mathcal{P}_{m+1} \xi^{M-m},$$

As a result, the functions $\alpha \text{, }\beta$ and γ are

$$\alpha = \sum_{m=0}^{M} \frac{(m-1)}{2} \mathcal{H}_m \xi^{M-m}, \quad \beta = \sum_{m=0}^{M} \mathcal{R}_{m+1} \xi^{M-m}, \quad \gamma = \sum_{m=0}^{M} \mathcal{P}_{m+1} \xi^{M-m},$$

where M is a positive integer and labels an infinite family of permissible gauge transformations.

As a result, the functions α , β and γ are

$$\alpha = \sum_{m=0}^{M} \frac{(m-1)}{2} \mathcal{H}_{m} \xi^{M-m}, \quad \beta = \sum_{m=0}^{M} \mathcal{R}_{m+1} \xi^{M-m}, \quad \gamma = \sum_{m=0}^{M} \mathcal{P}_{m+1} \xi^{M-m},$$

where M is a positive integer and labels an infinite family of permissible gauge transformations. Hence, the infinitesimal transformation of the fields r and p are

$$\delta r = -\gamma'_M + 2r\alpha_M, \quad \delta p = -\beta'_M - 2p\alpha_M.$$

3. Algebra of charges:

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ C 28/38

 Algebra of charges: The first class constraint must be suplemented by a boundary term in order to make it differentiable¹⁷

 Algebra of charges: The first class constraint must be suplemented by a boundary term in order to make it differentiable¹⁷

$$\delta Q[\Lambda] = \frac{k}{2\pi} \oint_{\rho \to \infty} d\phi \left< \Lambda \, \delta a_\phi \right>$$

¹⁷Regge, Teitelboim, 1973; Bañados, 1996. < □ > < ₫ > < ≣ > < ≡ > ○ <

 Algebra of charges: The first class constraint must be suplemented by a boundary term in order to make it differentiable¹⁷

$$\delta Q[\Lambda] = \frac{k}{2\pi} \oint_{\rho \to \infty} d\phi \left\langle \Lambda \, \delta a_{\phi} \right\rangle$$
$$\Rightarrow Q[\Lambda] = \frac{k}{2\pi} \sum_{m=0}^{M} \xi^{M-m} H_{m+1}.$$

¹⁷Regge, Teitelboim, 1973; Bañados, 1996.

 Algebra of charges: The first class constraint must be suplemented by a boundary term in order to make it differentiable¹⁷

$$\delta Q[\Lambda] = \frac{k}{2\pi} \oint_{\rho \to \infty} d\phi \left\langle \Lambda \, \delta a_{\phi} \right\rangle$$
$$\Rightarrow Q[\Lambda] = \frac{k}{2\pi} \sum_{m=0}^{M} \xi^{M-m} H_{m+1}.$$

It is possible to prove that the algebra of charges is

$$\left\{Q[\Lambda], Q[\overline{\Lambda}]\right\} = 0.$$

¹⁷Regge, Teitelboim, 1973; Bañados, 1996.

 AdS_3 general relativity is trivial from the bulk perspective. Thus, the dynamical content will be captured by boundary conditions and holonomies.

 AdS_3 general relativity is trivial from the bulk perspective. Thus, the dynamical content will be captured by boundary conditions and holonomies.

The holonomy in the angular coordinate is

 AdS_3 general relativity is trivial from the bulk perspective. Thus, the dynamical content will be captured by boundary conditions and holonomies.

The holonomy in the angular coordinate is

$$M^{\pm} = Tr\left(\mathcal{P}\exp\oint d\phi \, a_{\phi}^{\pm}\right)$$

 AdS_3 general relativity is trivial from the bulk perspective. Thus, the dynamical content will be captured by boundary conditions and holonomies.

The holonomy in the angular coordinate is

$$M^{\pm} = Tr\left(\mathcal{P}\exp\oint d\phi \,a^{\pm}_{\phi}\right)$$
$$= 2\cosh\left(2\pi\sqrt{(\xi^{\pm})^2 + p^{\pm}_0 r^{\pm}_0}\right),$$

 AdS_3 general relativity is trivial from the bulk perspective. Thus, the dynamical content will be captured by boundary conditions and holonomies.

The holonomy in the angular coordinate is

$$M^{\pm} = Tr\left(\mathcal{P}\exp\oint d\phi \,a_{\phi}^{\pm}\right)$$
$$= 2\cosh\left(2\pi\sqrt{(\xi^{\pm})^2 + p_0^{\pm}r_0^{\pm}}\right),$$

where $p^{\pm} = \sum_n p_n^{\pm} e^{in\phi}$ and $r^{\pm} = \sum_n r_n^{\pm} e^{in\phi}$.

$$M^{\pm} = 2 \cosh\left(2\pi \sqrt{(\xi^{\pm})^2 + p_0^{\pm} r_0^{\pm}}\right),\,$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ りへで 30/38

$$M^{\pm} = 2 \cosh\left(2\pi\sqrt{(\xi^{\pm})^2 + p_0^{\pm}r_0^{\pm}}\right),\,$$

What does represent the previous result, physically? According to [Martinec, 1998],

$$M^{\pm} = 2 \cosh\left(2\pi \sqrt{(\xi^{\pm})^2 + p_0^{\pm} r_0^{\pm}}\right),\,$$

What does represent the previous result, physically? According to [Martinec, 1998],

If M[±] < 2, the configuration represent classical particle sources, inducing conical singularities.</p>

$$M^{\pm} = 2 \cosh\left(2\pi \sqrt{(\xi^{\pm})^2 + p_0^{\pm} r_0^{\pm}}\right),\,$$

What does represent the previous result, physically? According to [Martinec, 1998],

- If M[±] < 2, the configuration represent classical particle sources, inducing conical singularities.
- $M^{\pm} > 2$ typifies black hole solutions.

$$M^{\pm} = 2 \cosh\left(2\pi \sqrt{(\xi^{\pm})^2 + p_0^{\pm} r_0^{\pm}}\right),\,$$

What does represent the previous result, physically? According to [Martinec, 1998],

- If M[±] < 2, the configuration represent classical particle sources, inducing conical singularities.
- $M^{\pm} > 2$ typifies black hole solutions.
- $M^{\pm} = 2$, leads to extremal black holes configurations.

$$M^{\pm} = 2 \cosh\left(2\pi \sqrt{(\xi^{\pm})^2 + p_0^{\pm} r_0^{\pm}}\right),\,$$

What does represent the previous result, physically? According to [Martinec, 1998],

- If $M^{\pm} < 2$, the configuration represent classical particle sources, inducing conical singularities.
- $M^{\pm} > 2$ typifies black hole solutions.
- $M^{\pm} = 2$, leads to extremal black holes configurations.

Remarkably, the three above configurations are attainable.

30/38

It is important to say that any solution of Einstein's equations in three dimensions with a negative cosmological constant corresponds to a spacetime of constant negative curvature.

It is important to say that any solution of Einstein's equations in three dimensions with a negative cosmological constant corresponds to a spacetime of constant negative curvature.

Thus, its geometry coincides locally AdS_3 . The only difference resides in its global properties¹⁸.

Construction of the metric

We can recover the metric,

$$g_{\mu\nu} = \frac{\ell^2}{2} \left\langle \left(A_{\mu}^+ - A_{\mu}^- \right) \left(A_{\nu}^+ - A_{\nu}^- \right) \right\rangle.$$

In ADM coordinates

$$ds^{2} = -N^{2}dt^{2} + \gamma_{ij}(N^{i}dt + dx^{i})(N^{j}dt + dx^{j}),$$

with $i=\rho,\phi,$ we obtain

the lapse function

$$N^2 = \frac{\rho^2}{4\ell^2} \frac{\left(\Omega^+\omega^- + \Omega^-\omega^+\right)^2}{\omega^-\omega^+},$$

the lapse function

$$N^{2} = \frac{\rho^{2}}{4\ell^{2}} \frac{(\Omega^{+}\omega^{-} + \Omega^{-}\omega^{+})^{2}}{\omega^{-}\omega^{+}},$$

the shift vectors

$$\begin{split} N^{\rho} &= \frac{\rho}{\ell} \left(A^{-} - A^{+} + \frac{1}{2} \left(\xi^{+} + \xi^{-} \right) \left(\frac{\Omega^{-}}{\omega^{-}} - \frac{\Omega^{+}}{\omega^{+}} \right) \right), \\ N^{\phi} &= \frac{1}{2\ell} \left(\frac{\Omega^{-}}{\omega^{-}} - \frac{\Omega^{+}}{\omega^{+}} \right), \end{split}$$

the lapse function

$$N^{2} = \frac{\rho^{2}}{4\ell^{2}} \frac{(\Omega^{+}\omega^{-} + \Omega^{-}\omega^{+})^{2}}{\omega^{-}\omega^{+}},$$

the shift vectors

$$\begin{split} N^{\rho} &= \frac{\rho}{\ell} \left(A^{-} - A^{+} + \frac{1}{2} \left(\xi^{+} + \xi^{-} \right) \left(\frac{\Omega^{-}}{\omega^{-}} - \frac{\Omega^{+}}{\omega^{+}} \right) \right), \\ N^{\phi} &= \frac{1}{2\ell} \left(\frac{\Omega^{-}}{\omega^{-}} - \frac{\Omega^{+}}{\omega^{+}} \right), \end{split}$$

the spatial metric

$$\gamma_{ij} = \begin{pmatrix} \frac{\ell^2}{\rho^2} & -\frac{\ell^2}{\rho} \left(\xi^+ + \xi^-\right) \\ -\frac{\ell^2}{\rho} \left(\xi^+ + \xi^-\right) & \ell^2 \left(\xi^+ + \xi^-\right)^2 + \rho^2 \omega^- \omega^+ \end{pmatrix},$$

(ロト (日) (三) (三) (三) (33/38)

where the auxiliary functions Ω^{\pm} and ω^{\pm} are defined as

$$\Omega^{\pm} \equiv B^{\pm} - \frac{\ell^2}{\rho^2} C^{\mp}, \quad \omega^{\pm} \equiv p^{\pm} + \frac{\ell^2}{\rho^2} r^{\mp},$$

with ℓ the AdS_3 radius.

¹⁹Ablowitz, Kaup, Newell, Segur, 1973.

where the auxiliary functions Ω^{\pm} and ω^{\pm} are defined as

$$\Omega^{\pm} \equiv B^{\pm} - \frac{\ell^2}{\rho^2} C^{\mp}, \quad \omega^{\pm} \equiv p^{\pm} + \frac{\ell^2}{\rho^2} r^{\mp},$$

with ℓ the AdS_3 radius. The Einstein equations

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R - \frac{1}{\ell^2}g_{\mu\nu} = 0,$$

¹⁹Ablowitz, Kaup, Newell, Segur, 1973.

where the auxiliary functions Ω^\pm and ω^\pm are defined as

$$\Omega^{\pm} \equiv B^{\pm} - \frac{\ell^2}{\rho^2} C^{\mp}, \quad \omega^{\pm} \equiv p^{\pm} + \frac{\ell^2}{\rho^2} r^{\mp},$$

with ℓ the AdS_3 radius. The Einstein equations

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R - \frac{1}{\ell^2}g_{\mu\nu} = 0,$$

reduces to the AKNS system¹⁹.

¹⁹Ablowitz, Kaup, Newell, Segur, 1973.

The familiy of boundary conditions constructed here encompasses some examples found in the literature.

► The Brown-Henneaux boundary conditions²⁰ may be recovered when $N^{\pm} = 1$, $r^{\pm} = 1$ and then setting $\xi^{\pm} = 0$.

²⁰Brown and Henneaux, 1986.

²¹Compere, Song and Strominger, 2013; Troessaert, 2013; Grumiller and ^{Ullis} Riegler, 2016; Ojeda and Pérez, 2019.

シッペ 35/38

The familiy of boundary conditions constructed here encompasses some examples found in the literature.

- ► The Brown-Henneaux boundary conditions²⁰ may be recovered when N[±] = 1, r[±] = 1 and then setting ξ[±] = 0.
- Additionally, the family of KdV boundary conditions found in [Pérez, Tempo and Troncoso (2016)] is recovered for r[±] = 1, odd values of N[±] and vanishing ξ[±].

35/38

²⁰Brown and Henneaux, 1986.

²¹Compere, Song and Strominger, 2013; Troessaert, 2013; Grumiller and ^{Ullis} Riegler, 2016; Ojeda and Pérez, 2019.

The familiy of boundary conditions constructed here encompasses some examples found in the literature.

- ► The Brown-Henneaux boundary conditions²⁰ may be recovered when N[±] = 1, r[±] = 1 and then setting ξ[±] = 0.
- Additionally, the family of KdV boundary conditions found in [Pérez, Tempo and Troncoso (2016)] is recovered for r[±] = 1, odd values of N[±] and vanishing ξ[±]. A detailed discussion of how this work relates to several other boundary conditions for AdS₃ gravity²¹, will be given in future works.

35/38

²⁰Brown and Henneaux, 1986.

²¹Compere, Song and Strominger, 2013; Troessaert, 2013; Grumiller and ^{Ullis} Riegler, 2016; Ojeda and Pérez, 2019.

The familiy of boundary conditions constructed here encompasses some examples found in the literature.

- ► The Brown-Henneaux boundary conditions²⁰ may be recovered when N[±] = 1, r[±] = 1 and then setting ξ[±] = 0.
- Additionally, the family of KdV boundary conditions found in [Pérez, Tempo and Troncoso (2016)] is recovered for r[±] = 1, odd values of N[±] and vanishing ξ[±]. A detailed discussion of how this work relates to several other boundary conditions for AdS₃ gravity²¹, will be given in future works.

35/38

²⁰Brown and Henneaux, 1986.

²¹Compere, Song and Strominger, 2013; Troessaert, 2013; Grumiller and ^{Ullis} Riegler, 2016; Ojeda and Pérez, 2019.

1. We studied the integrable system known as AKNS system.

- 1. We studied the integrable system known as AKNS system.
- 2. We studied its spacetime geometrization in 2 + 1 dimensions, i.e., we constructed a bonna fide action principle, we found its asymptotic symmetries, we computed the algebra of charges and we proved that gravitational configurations, such as black holes, are attainable.

- 1. We studied the integrable system known as AKNS system.
- 2. We studied its spacetime geometrization in 2 + 1 dimensions, i.e., we constructed a bonna fide action principle, we found its asymptotic symmetries, we computed the algebra of charges and we proved that gravitational configurations, such as black holes, are attainable.
- 3. Further work must be done, such as thermodynamics, higher spins extensions, Hamiltonian reduction, etc.

Thank you for your attention!

